
 4 Solutions

Solution 4.1
4.1.1 The values of the signals are as follows:

RegWrite MemRead ALUMux MemWrite ALUOp RegMux Branch

a. 1 0 0 (Reg) 0 Add 1 (ALU) 0

b. 1 1 1 (Imm) 0 Add 1 (Mem) 0

ALUMux is the control signal that controls the Mux at the ALU input, 0 (Reg)
selects the output of the register fi le and 1 (Imm) selects the immediate from the
instruction word as the second input to the ALU.

RegMux is the control signal that controls the Mux at the Data input to the regis-
ter fi le, 0 (ALU) selects the output of the ALU and 1 (Mem) selects the output of
memory.

A value of X is a “don’t care” (does not matter if signal is 0 or 1)

4.1.2 Resources performing a useful function for this instruction are:

a. All except Data Memory and branch Add unit

b. All except branch Add unit and second read port of the Registers

4.1.3

Outputs that are not used No outputs

a. Branch Add Data Memory

b. Branch Add, second read port of Registers None (all units produce outputs)

4.1.4 One long path for and instruction is to read the instruction, read the reg-
isters, go through the ALUMux, perform the ALU operation, and go through the
Mux that controls the write data for Registers (I-Mem, Regs, Mux, ALU, and Mux).
The other long path is similar, but goes through Control while registers are read
(I- Mem, Control, Mux, ALU, Mux). There are other paths but they are shorter,
such as the PC increment path (only Add and then Mux), the path to prevent
branching (I-Mem, Control, Mux uses Branch signal to select the PC + 4 input as
the new value for PC), the path that prevents a memory write (only I-Mem and
then Control, etc).

S110 Chapter 4 Solutions

a. Control is faster than registers, so the critical path is I-Mem, Regs, Mux, ALU, Mux.

b. Control is faster than registers, so the critical path is I-Mem, Regs, Mux, ALU, Mux.

4.1.5 One long path is to read instruction, read registers, use the Mux to select the
immediate as the second ALU input, use ALU (compute address), access D-Mem,
and use the Mux to select that as register data input, so we have I-Mem, Regs,
Mux, ALU, D-Mem, Mux. The other long path is similar, but goes through Control
instead of Regs (to generate the control signal for the ALU MUX). Other paths are
shorter, and are similar to shorter paths described for 4.1.4.

a. Control is faster than registers, so the critical path is I-Mem, Regs, Mux, ALU, D-Mem, Mux.

b. Control is faster than registers, so the critical path is I-Mem, Regs, Mux, ALU, Mux.

4.1.6 This instruction has two kinds of long paths, those that determine the
branch condition and those that compute the new PC. To determine the branch
condition, we read the instruction, read registers or use the Control unit, then use
the ALU Mux and then the ALU to compare the two values, then use the Zero out-
put of the ALU to control the Mux that selects the new PC. As in 4.1.4 and 4.1.5:

a. The fi rst path (through Regs) is longer.

b. The fi rst path (through Regs) is longer.

To compute the PC, one path is to increment it by 4 (Add), add the offset (Add),
and select that value as the new PC (Mux). The other path for computing the PC is
to Read the instruction (to get the offset), use the branch Add unit and Mux. Both
of the compute-PC paths are shorter than the critical path that determines the
branch condition, because I-Mem is slower than the PC + 4 Add unit, and because
ALU is slower than the branch Add.

Solution 4.2
4.2.1 Existing blocks that can be used for this instruction are:

a. This instruction uses instruction memory, both existing read ports of Registers, the ALU, and
the write port of Registers.

b. This instruction uses the instruction memory, one of the existing register read ports, the path
that passed the immediate to the ALU, and the register write port.

4.2.2 New functional blocks needed for this instruction are:

a. Another read port in Registers (to read Rx) and either a second ALU (to add Rx to Rs + Rt) or a
third input to the existing ALU.

b. We need to extend the existing ALU to also do shifts (adds a SLL ALU operation).

 Chapter 4 Solutions S111

4.2.3 The new control signals are:

a. We need a control signal that tells the new ALU what to do, or if we extended the existing ALU
we need to add a new ADD3 operation.

b. We need to change the ALU Operation control signals to support the added SLL operation in
the ALU.

4.2.4 Clock cycle time is determined by the critical path, which for the given
latencies happens to be to get the data value for the load instruction: I-Mem
(read instruction), Regs (takes longer than Control), Mux (select ALU input),
ALU, Data Memory, and Mux (select value from memory to be written into
Registers). The latency of this path is 400ps + 200ps + 30ps + 120ps + 350ps +
30ps = 1130ps.

New clock cycle time

a. 1130ps (No change, Add units are not on the critical path).

b. 1230 (1130ps + 100ps, Regs are on the critical path)

4.2.5 The speed-up comes from changes in clock cycle time and changes to the
number of clock cycles we need for the program:

Benefi t

a. Speed-up is 1 (no change in number of cycles, no change in clock cycle time).

b. We need 5% fewer cycles for a program, but cycle time is 1230 instead of 1130, so we have a
speed-up of (1/0.95) × (1130/1230) = 0.97, which means we actually have a small slowdown.

4.2.6 The cost is always the total cost of all components (not just those on the
critical path, so the original processor has a cost of I-Mem, Regs, Control, ALU,
D-Mem, 2 Add units and 3 Mux units, for a total cost of 1000 + 200 + 500 + 100 +
2000 + 2 × 30 + 3 × 10 = 3890.

We will compute cost relative to this baseline. The performance relative to this
baseline is the speed-up we computed in 4.2.5, and our cost/performance relative
to the baseline is as follows:

New cost Relative cost Cost/Performance

a. 3890 + 2 × 20 = 3930 3930/3890 = 1.01 1.01/1 = 1.01. We are paying a bit more for
the same performance.

b. 3890 + 200 = 4090 4090/3890 = 1.05 1.05/0.97 = 1.08. We are paying some more
and getting a small slowdown, so out cost/
performance gets worse.

S112 Chapter 4 Solutions

Solution 4.3
4.3.1

a. Both. It is mostly fl ip-fl ops, but it has logic that controls which fl ip-fl ops get read or written in
each cycle

b. Both. It is mostly fl ip-fl ops, but it has logic that controls which fl ip-fl ops get read or written in
each cycle

4.3.2

a.

D

C

Q

D

C

Q

D

C

Q

D

C

Q

A1 A0

Instruction 0

This shows the lowermost bit of each word. This schematic is repeated
7 more times for the remaining seven bits. Note that there are no connec-
tions for D and C fl ip-fl op inputs because datapath fi gures do not specify
how instruction memory is written.

 Chapter 4 Solutions S113

b.

D

C

Q

Reg0_0

RData1_0

RData2_0

D

C

Q

Reg1_0

RReg1

RReg2

Clock

WData_0

RegWrite

WReg

This is the schematic for the lowermost bit, it needs to be repeated 7 more times for the remaining
bits. RReg1 is the Read Register 1 input, RReg2 is the Read Register 2 input, WReg is the Write Register
input, WData is the Write Data input. RData1 and RData2 are Read Data 1 and Read Data 2 outputs.
Data outputs and input have “_0” to denote that this is only bit 0 of the 8-bit signal.

S114 Chapter 4 Solutions

4.3.3

a.

D

C

Q

D

C

Q

D

C

Q

D

C

Q

A1 A0

Instruction 0

b. No change, there are no gates with more then 2 inputs in the schematic.

4.3.4 The latency of a path is the latency from an input (or a D-element output)
to an output (or D-element input). The latency of the circuit is the latency of the
path with the longest latency. Note that there are many correct ways to design the
circuit in 4.3.2, and for each solution to 4.3.2 there is a different solution for this
problem.

4.3.5 The cost of the implementation is simply the total cost of all its compo-
nents. Note that there are many correct ways to design the circuit in 4.3.2, and for
each solution to 4.3.2 there is a different solution for this problem.

 Chapter 4 Solutions S115

4.3.6

a. Because multi-input AND and OR gates have the same latency as 2-input ones, we can use
many-input gates to reduce the number of gates on the path from inputs to outputs. The
schematic shown for 4.3.2 turns out to already be optimal.

b. A three-input or a four-input gate has a lower latency than a cascade of two 2-input gates.
This means that shorter overall latency is achieved by using 3- and 4-input gates rather than
cascades of 2-input gates. In our schematic shown for 4.3.2, we should replace the three
2-input AND gates used for Clock, RegWrite, and WReg signals with two 3-input AND gates that
directly determine the value of the C input for each D-element.

Solution 4.4
4.4.1 We show the implementation and also determine the latency (in gates)
needed for 4.4.2.

Implementation Latency in gates

a.

C

B
A

4

b.

C

A
B

4

4.4.2 See answer for 4.4.1 above.

S116 Chapter 4 Solutions

4.4.3

Implementation

a.

C

B
A Signal 1

Signal 2

b.

C

B
A

Signal 2

Signal 1

4.4.4

a. There are four OR gates on the critical path, for a total of 136ps

b. The critical path consists of OR, XOR, OR, and OR, for a total of 510ps

4.4.5

a. The cost is 2 AND gates and 4 OR gates, for a total cost of 16.

b. The cost is 1 AND gate, 4 OR gates, and 1 XOR gate, for a total cost of 12.

4.4.6 We already computed the cost of the combined circuit. Now we determine
the cost of the separate circuits and the savings.

Combinend cost Separate cost Saved

a. 16 22 (+2 OR gates) (22 – 16)/22 = 27%

b. 12 14 (+1 AND gate) (14 – 12)/14 = 14%

 Chapter 4 Solutions S117

Solution 4.5
4.5.1

a.

D

C

Q

Start

Clk

X

Out

Carry

b.

D

C

Q
D

C

Q

Start

Out
X

Clk

4.5.2

a.

D

C

Q

Start

Carry_i � 1

X_i � 1

X_i

Clk

Out_i

Out_i � 1

b.

D

C

Q

D

C

Q

Start

Clk

X_i � 1

X_i Out_i

Out_i � 1

S118 Chapter 4 Solutions

4.5.3

Cycle time Operation time

a. 90ps (OR, AND, D) 32 × 90ps = 2880ps

b. 170ps (NOT, AND, D) 32 × 170ps = 5440ps

4.5.4

Cycle time Speed-up

a. 120ps (OR, AND, AND, D) (32 × 90ps)/(16 × 120ps) = 1.50

b. 90ps (NOT, AND) (32 × 170ps)/(16 × 90ps) = 3.78

4.5.5

Circuit 1 Circuit 2

a. 14 (1 AND, 1 OR, 1 XOR, 1 D) 20 (2 AND, 1 OR, 2 XOR, 1 D)

b. 29 (1 NOT, 2 AND, 2 D) 29 (1 NOT, 2 AND, 2 D)

4.5.6

Cost/Performance
for Circuit 1

Cost/Performance
for Circuit 2 Circuit 1 versus Circuit 2

a. 14 × 32 × 90 = 40320 20 × 16 × 120 = 38400 Cost/performance of Circuit 2 is
better by about 4.7%

b. 29 × 32 × 170 = 157760 29 × 16 × 90 = 41760 Cost/performance of Circuit 2 is
better by about 73.5%

Solution 4.6
4.6.1 I-Mem takes longer than the Add unit, so the clock cycle time is equal to the
latency of the I-Mem:

a. 400ps

b. 500ps

4.6.2 The critical path for this instruction is through the instruction memory,
Sign-extend and Shift-left-2 to get the offset, Add unit to compute the new PC, and
Mux to select that value instead of PC + 4. Note that the path through the other

 Chapter 4 Solutions S119

Add unit is shorter, because the latency of I-Mem is longer that the latency of the
Add unit. We have:

a. 400ps + 20ps + 2ps + 100ps + 30ps = 552ps

b. 500ps + 90ps + 20ps + 150ps + 100ps = 860ps

4.6.3 Conditional branches have the same long-latency path that computes the
branch address as unconditional branches do. Additionally, they have a long-latency
path that goes through Registers, Mux, and ALU to compute the PCSrc condition.
The critical path is the longer of the two, and the path through PCSrc is longer for
these latencies:

a. 400ps + 200ps + 30ps + 120ps + 30ps = 780ps

b. 500ps + 220ps + 100ps + 180ps + 100ps = 1100ps

4.6.4

a. All instructions except jumps that are not PC-relative (jal, jalr, j, jr)

b. Loads and stores

4.6.5

a. None. I-Mem is slower, and all instructions (even NOP) need to read the instruction.

b. Loads and stores.

4.6.6 Of the two instruction (bne and add), bne has a longer critical path so it
determines the clock cycle time. Note that every path for add is shorter or equal to
than the corresponding path for bne, so changes in unit latency will not affect this.
As a result, we focus on how the unit’s latency affects the critical path of bne:

a. This unit is not on the critical path, so changes to its latency do not affect the clock cycle time
unless the latency of the unit becomes so large to create a new critical path through this unit,
the branch add, and the PC Mux. The latency of this path is 230ps and it needs to be above
780ps, so the latency of the Add-4 unit needs to be more 650ps for it to be on the critical path.

b. This unit is not used by BNE nor by ADD, so it cannot affect the critical path for either
instruction.

Solution 4.7
4.7.1 The longest-latency path for ALU operations is through I-Mem, Regs, Mux
(to select ALU operand), ALU, and Mux (to select value for register write). Note
that the only other path of interest is the PC-increment path through Add (PC + 4)

S120 Chapter 4 Solutions

and Mux, which is much shorter. So for the I-Mem, Regs, Mux, ALU, Mux path
we have:

a. 400ps + 200ps + 30ps + 120ps + 30ps = 780ps

b. 500ps + 220ps + 100ps + 180ps + 100ps = 1100ps

4.7.2 The longest-latency path for lw is through I-Mem, Regs, Mux (to select ALU
input), ALU, D-Dem, and Mux (to select what is written to register). The only other
interesting paths are the PC-increment path (which is much shorter) and the path
through Sign-extend unit in address computation instead of through Registers.
However, Regs has a longer latency than Sign-extend, so for I-Mem, Regs, Mux,
ALU, D-Mem, and Mux path we have:

a. 400ps + 200ps + 30ps + 120ps + 350ps + 30ps = 1130ps

b. 500ps + 220ps + 100ps + 180ps + 1000ps + 100ps = 2100ps

4.7.3 The answer is the same as in 4.7.2 because the lw instruction has the longest
critical path. The longest path for sw is shorter by one Mux latency (no write to
register), and the longest path for add or bne is shorter by one D-Mem latency.

4.7.4 The data memory is used by lw and sw instructions, so the answer is:

a. 20% + 10% = 30%

b. 35% + 15% = 50%

4.7.5 The sign-extend circuit is actually computing a result in every cycle, but its
output is ignored for add and not instructions. The input of the sign-extend cir-
cuit is needed for addi (to provide the immediate ALU operand), beq (to provide
the PC-relative offset), and lw and sw (to provide the offset used in addressing
memory) so the answer is:

a. 15% + 20% + 20% + 10% = 65%

b. 5% + 15% + 35% + 15% = 70%

4.7.6 The clock cycle time is determined by the critical path for the instruction
that has the longest critical path. This is the lw instruction, and its critical path
goes through I-Mem, Regs, Mux, ALU, D-Mem, and Mux so we have:

a. I-Mem has the longest latency, so we reduce its latency from 400ps to 360ps, making the clock
cycle 40ps shorter. The speed-up achieved by reducing the clock cycle time is then 1130ps/
1090ps = 1.037

b. D-Mem has the longest latency, so we reduce its latency from 1000ps to 900ps, making the
clock cycle 100ps shorter. The speed-up achieved by reducing the clock cycle time is then
2100ps/2000ps = 1.050

 Chapter 4 Solutions S121

Solution 4.8
4.8.1 To test for a stuck-at-0 fault on a wire, we need an instruction that puts that
wire to a value of 1 and has a different result if the value on the wire is stuck at zero:

a. Bit 7 of the instruction word is only used as part of an immediate/offset part of the instruction,
so one way to test would be to execute ADDI $1, zero, 128 which is supposed to place a value
of 128 into $1. If instruction bit 7 is stuck at zero, $1 will be zero because value 128 has all
bits at zero except bit 7.

b. The only instructions that set this signal to 1 are loads. We can test by fi lling the data memory
with zeros and executing a load instruction from a non-zero address, e.g., LW $1, 1024(zero).
After this instruction, the value in $1 is supposed to be zero. If the MemtoReg signal is stuck
at 0, the value in the register will be 1024 (the Mux selects the ALU output (1024) instead of
the value from memory).

4.8.2 The test for stuck-at-zero requires an instruction that sets the signal to 1
and the test for stuck-at-1 requires an instruction that sets the signal to 0. Because
the signal cannot be both 0 and 1 in the same cycle, we cannot test the same signal
simultaneously for stuck-at-0 and stuck-at-1 using only one instruction. The test
for stuck-at-1 is analogous to the stuck-at-0 test:

a. We can use ADDI $1, zero, 0 which is supposed to put a value of 0 in $1. If Bit 7 of the
instruction word is stuck at 1, the immediate operand becomes 128 and $1 becomes 128
instead of 0.

b. We cannot reliably test for this fault, because all instructions that set the MemtoReg signal
to zero also set the ReadMem signal to zero. If one of these instructions is used as a test for
MemtoReg stuck-at-1, the value written to the destination register is “random” (whatever noise
is there at the data output of Data Memory). This value could be the same as the value already
in the register, so if the fault exists the test may not detect it.

4.8.3

a. It is possible to work around this fault, but it is very diffi cult. We must fi nd all instructions that
have zero in this bit of the offset or immediate operand and replace them with a sequence of
“safe” instruction. For example, a load with such an offset must be replaced with an instruction
that subtracts 128 from the address register, then the load (with the offset larger by 128 to set
bit 7 of the offset to 1), then subtract 128 from the address register.

b. We cannot work around this problem, because it prevents all instructions from storing their
result in registers, except for load instructions. Load instructions only move data from memory
to registers, so they cannot be used to emulate ALU operations “broken” by the fault.

S122 Chapter 4 Solutions

4.8.4

a. If MemRead is stuck at 0, data memory is read for every instruction. However, for non-load
instructions the value from memory is discarded by the Mux that selects the value to be written
to the Register unit. As a result, we cannot design this kind of test for this fault, because the
processor still operates correctly (although ineffi ciently).

b. To test for this fault, we need an instruction whose opcode is zero and MemRead is 1. However,
instructions with a zero opcode are ALU operations (not loads), so their MemRead is 0. As a
result, we cannot design this kind of test for this fault, because the processor operates correctly.

4.8.5

a. If Jump is stuck-at-1, every instruction updates the PC as if it were a jump instruction. To test for
this fault, we can execute an ADDI with a non-zero immediate operand. If the Jump signal is stuck-
at-1, the PC after the ADDI executes will not be pointing to the instruction that follows the ADDI.

b. To test for this fault, we need an instruction whose opcode is zero and Jump is 1. However, the
opcode for the jump instruction is non-zero. As a result, we cannot design this kind of test for
this fault, because the processor operates correctly.

4.8.6 Each single-instruction test “covers” all faults that, if present, result in dif-
ferent behavior for the test instruction. To test for as many of these faults as possi-
ble in a single instruction, we need an instruction that sets as many of these signals
to a value that would be changed by a fault. Some signals cannot be tested using
this single-instruction method, because the fault on a signal could still result in
completely correct execution of all instruction that trigger the fault.

Solution 4.9
4.9.1

Binary Hexadecimal

a. 100011 00110 00001 0000000000101000 8CC10028

b. 000101 00001 00010 1111111111111111 1422FFFF

4.9.2

Read register 1 Actually read? Read register 2 Actually read?

a. 6 (00110b) Yes 1 (00001b) Yes (but not used)

b. 1 (00001b) Yes 2 (00010b) Yes

 Chapter 4 Solutions S123

4.9.3

Read register 1 Register actually written?

a. 1 (00001b) Yes

b. Either 2 (00010b) of 31 (11111b) (don’t know
because RegDst is X)

No

4.9.4

Control signal 1 Control signal 2

a. RegDst = 0 MemRead = 1

b. RegWrite = 0 MemRead = 0

4.9.5 We use I31 through I26 to denote individual bits of Instruction[31:26],
which is the input to the Control unit:

a. RegDst = NOT I31

b. RegWrite = (NOT I28 AND NOT I27) OR (I31 AND NOT I29)

4.9.6 If possible, we try to reuse some or all of the logic needed for one signal to
help us compute the other signal at a lower cost:

a. RegDst = NOT I31
MemRead = I31 AND NOT I29

b. MemRead = I31 AND NOT I29
RegWrite = (NOT I28 AND NOT I27) OR MemRead

Solution 4.10
To solve problems in this exercise, it helps to fi rst determine the latencies of dif-
ferent paths inside the processor. Assuming zero latency for the Control unit, the
critical path is the path to get the data for a load instruction, so we have I-Mem,
Mux, Regs, Mux, ALU, D-Mem and Mux on this path.

4.10.1 The Control unit can begin generating MemWrite only after I-Mem is
read. It must fi nish generating this signal before the end of the clock cycle. Note
that MemWrite is actually a write-enable signal for D-Mem fl ip-fl ops, and the
actual write is triggered by the edge of the clock signal, so MemWrite need not

S124 Chapter 4 Solutions

arrive before that time. So the Control unit must generate the MemWrite in one
clock cycle, minus the I-Mem access time:

Critical path Maximum time to generate MemWrite

a. 400ps + 30ps + 200ps + 30ps +
120ps + 350ps + 30ps = 1160ps

1160ps – 400ps = 760ps

b. 500ps + 100ps + 220ps + 100ps +
180ps + 1000ps + 100ps = 2200ps

2200ps – 500ps = 1700ps

4.10.2 All control signals start to be generated after I-Mem read is complete. The
most slack a signal can have is until the end of the cycle, and MemWrite and Reg-
Write are both needed only at the end of the cycle, so they have the most slack.
The time to generate both signals without increasing the critical path is the one
computed in 4.10.1.

4.10.3 MemWrite and RegWrite are only needed by the end of the cycle.
RegDst, Jump, and MemtoReg are needed one Mux latency before the end of the
cycle, so they are more critical than MemWrite and RegWrite. Branch is needed
two Mux latencies before the end of the cycle, so it is more critical than these.
MemRead is needed one D-Mem plus one Mux latency before the end of the
cycle, and D-Mem has more latency than a Mux, so MemRead is more critical
than Branch. ALUOp must get to ALU control in time to allow one ALU Ctrl,
one ALU, one D-Mem, and one Mux latency before the end of the cycle. This is
clearly more critical than MemRead. Finally, ALUSrc must get to the pre-ALU
Mux in time, one Mux, one ALU, one D-Mem, and one Mux latency before the
end of the cycle. Again, this is more critical than MemRead. Between ALUOp and
ALUSrc, ALUOp is more critical than ALUSrc if ALU control has more latency
than a Mux. If ALUOp is the most critical, it must be generated one ALU Ctrl
latency before the critical-path signals can go through Mux, Regs, and Mux. If
the ALUSrc signal is the most critical, it must be generated while the critical path
goes through Mux and Regs. We have

The most critical control
signal is

Time to generate it without
affecting the clock cycle time

a. ALUOp (50ps > 30ps) 30ps + 200ps + 30ps – 50ps = 210ps

b. ALUSrc (100ps > 55ps) 100ps + 220ps = 320ps

For the next three problems, it helps to compute for each signal how much time
we have to generate it before it starts affecting the critical path. We already did this
for RegDst and RegWrite in 4.10.1, and in 4.10.3 we described how to do it for the
remaining control signals. We have:

 Chapter 4 Solutions S125

RegDst Jump Branch MemRead MemtoReg ALUOp MemWrite ALUSrc RegWrite

a. 730ps 730ps 700ps 380ps 730ps 210ps 760ps 230ps 760ps

b. 1600ps 1600ps 1500ps 600ps 1600ps 365ps 1700ps 320ps 1700ps

The difference between the allowed time and the actual time to generate the signal
is called “slack”. For this problem, the allowed time will be the maximum time the
signal can take without affecting clock cycle time. If slack is positive, the signal
arrives before it is actually needed and it does not affect clock cycle time. If the
slack is positive, the signal is late and the clock cycle time must be adjusted. We now
compute the clack for each signal:

RegDst Jump Branch MemRead MemtoReg ALUOp MemWrite ALUSrc RegWrite

a. 10ps 0ps 100ps –20ps 30ps 10ps 50ps 30ps –40ps

b. 0ps 0ps 100ps 100ps 200ps –35ps 200ps –80ps 0ps

4.10.4 With this in mind, the clock cycle time is what we computed in 4.10.1,
plus the absolute value of the most negative slack. We have:

Control signal with the
most negative slack is

Clock cycle time with ideal
Control unit (from 4.10.1)

Actual clock cycle time
with these signal

latencies

a. RegWrite (-40ps) 1160ps 1200ps

b. ALUSrc (-80ps) 2200ps 2280ps

4.10.5 It only makes sense to pay to speed-up signals with negative slack, because
improvements to signals with positive slack cost us without improving perfor-
mance. Furthermore, for each signal with negative slack, we need to speed it up
only until we eliminate all its negative slack, so we have:

Signals with negative slack
Per-processor cost to

eliminate all negative slack

a. MemRead (–20ps)

RegWrite (–40ps)

60ps at $1/5ps = $12

b. ALUOp (–35ps)

ALUSrc (–80ps)

115ps at $1/5ps = $23

S126 Chapter 4 Solutions

4.10.6 The signal with the most negative slack determines the new clock cycle
time. The new clock cycle time increases the slack of all signals until there are is
no remaining negative slack. To minimize cost, we can then slow down signals that
end up having some (positive) slack. Overall, the cost is minimized by slowing
signals down by:

RegDst Jump Branch MemRead MemtoReg ALUOp MemWrite ALUSrc RegWrite

a. 50ps 40ps 140ps 20ps 70ps 50ps 90ps 70ps 0ps

b. 80ps 80ps 180ps 180ps 280ps 45ps 280ps 0ps 80ps

Solution 4.11
4.11.1

Sign-extend Jump’s shift-left-2

a. 00000000000000000000000000010000 0001000011000000000001000000

b. 00000000000000000000000000001100 0000100011000000000000110000

4.11.2

ALUOp[1-0] Instruction[5-0]

a. 00 010000

b. 01 001100

4.11.3

New PC Path

a. PC + 4 PC to Add (PC + 4) to branch Mux to jump
Mux to PC

b. If $1 and $3 are not equal, PC + 4
If $1 and $3 are equal, PC + 4 + 4 × 12

PC to Add (PC + 4) to branch Mux, or PC to
Add (PC + 4) to Add (adds offset) to branch
Mux. After the branch Mux, we go through
jump Mux and into the PC

4.11.4

WrReg Mux ALU Mux Mem/ALU Mux Branch Mux Jump Mux

a. 3 16 0 PC + 4 PC + 4

b. 3 or 0 (RegDst is X) –3 X PC + 4 PC + 4

 Chapter 4 Solutions S127

4.11.5

ALU Add (PC + 4) Add (Branch)

a. 2 and 16 PC and 4 PC + 4 and 16 × 4

b. –16 and –3 PC and 4 PC + 4 and 12 × 4

4.11.6

Read Register 1 Read Register 2 Write Register Write Data RegWrite

a. 2 3 3 0 1

b. 1 3 X (3 or 0) X 0

Solution 4.12
4.12.1

Pipelined Single-cycle

a. 500ps 1650ps

b. 200ps 800ps

4.12.2

Pipelined Single-cycle

a. 2500ps 1650ps

b. 1000ps 800ps

4.12.3

Stage to split New clock cycle time

a. MEM 400ps

b. IF 190ps

4.12.4

a. 25%

b. 45%

S128 Chapter 4 Solutions

4.12.5

a. 65%

b. 60%

4.12.6 We already computed clock cycle times for pipelined and single cycle
organizations in 4.12.1, and the multi-cycle organization has the same clock cycle
time as the pipelined organization. We will compute execution times relative to the
pipelined organization. In single-cycle, every instruction takes one (long) clock
cycle. In pipelined, a long-running program with no pipeline stalls completes one
instruction in every cycle. Finally, a multi-cycle organization completes a lw in
5 cycles, a sw in 4 cycles (no WB), an ALU instruction in 4 cycles (no MEM), and a
beq in 4 cycles (no WB). So we have the speed-up of pipeline

Multi-cycle execution time is X times
pipelined execution time, where X is

Single-cycle execution time is X times
pipelined execution time, where X is

a. 0.15 × 5 + 0.85 × 4 = 4.15 1650ps/500ps = 3.30

b. 0.30 × 5 + 0.70 × 4 = 4.30 800ps/200ps = 4.00

Solution 4.13
4.13.1

Instruction sequence Dependences

a. I1: lw $1,40($6)
I2: add $6,$2,$2
I3: sw $6,50($1)

RAW on $1 from I1 to I3
RAW on $6 from I2 to I3
WAR on $6 from I1 to I2 and I3

b. I1: lw $5,-16($5)
I2: sw $5,-16($5)
I3: add $5,$5,$5

RAW on $5 from I1 to I2 and I3
WAR on $5 from I1 and I2 to I3
WAW on $5 from I1 to I3

4.13.2 In the basic fi ve-stage pipeline WAR and WAW dependences do not cause
any hazards. Without forwarding, any RAW dependence between an instruction
and the next two instructions (if register read happens in the second half of the
clock cycle and the register write happens in the fi rst half). The code that eliminates
these hazards by inserting nop instructions is:

 Chapter 4 Solutions S129

Instruction
sequence

a. lw $1,40($6)
add $6,$2,$2
nop
sw $6,50($1)

Delay I3 to avoid RAW hazard on $1 from I1

b. lw $5,-16($5)
nop
nop
sw $5,-16($5)
add $5,$5,$5

Delay I2 to avoid RAW hazard on $5 from I1

Note: no RAW hazard from on $5 from I1 now

4.13.3 With full forwarding, an ALU instruction can forward a value to EX stage
of the next instruction without a hazard. However, a load cannot forward to the
EX stage of the next instruction (by can to the instruction after that). The code that
eliminates these hazards by inserting nop instructions is:

Instruction
sequence

a. lw $1,40($6)
add $6,$2,$2
sw $6,50($1) No RAW hazard on $1 from I1 (forwarded)

b. lw $5,-16($5)
nop
sw $5,-16($5)
add $5,$5,$5

Delay I2 to avoid RAW hazard on $5 from I1
Value for $5 is forwarded from I2 now
Note: no RAW hazard from on $5 from I1 now

4.13.4 The total execution time is the clock cycle time times the number of cycles.
Without any stalls, a three-instruction sequence executes in 7 cycles (5 to complete
the fi rst instruction, then one per instruction). The execution without forwarding
must add a stall for every nop we had in 4.13.2, and execution forwarding must add
a stall cycle for every nop we had in 4.13.3. Overall, we get:

No forwarding With forwarding Speed-up due to forwarding

a. (7 + 1) × 300ps = 2400ps 7 × 400ps = 2800ps 0.86 (This is really a slowdown)

b. (7 + 2) × 200ps = 1800ps (7 + 1) × 250ps = 2000ps 0.90 (This is really a slowdown)

S130 Chapter 4 Solutions

 4.13.5 With ALU-ALU-only forwarding, an ALU instruction can forward to the
next instruction, but not to the second-next instruction (because that would be
 forwarding from MEM to EX). A load cannot forward at all, because it determines
the data value in MEM stage, when it is too late for ALU-ALU forwarding. We have:

Instruction sequence

a. lw $1,40($6)
add $6,$2,$2
nop
sw $6,50($1)

Can’t use ALU-ALU forwarding, ($1 loaded in MEM)

b. lw $5,-16($5)
nop
nop
sw $5,-16($5)
add $5,$5,$5

Can’t use ALU-ALU forwarding ($5 loaded in MEM)

4.13.6

No forwarding
With ALU-ALU

forwarding only
Speed-up with ALU-ALU

forwarding

a. (7 + 1) × 300ps = 2400ps (7 + 1) × 360ps = 2880ps 0.83 (This is really a slowdown)

b. (7 + 2) × 200ps = 1800ps (7 + 2) × 220ps = 1980ps 0.91 (This is really a slowdown)

Solution 4.14
4.14.1 In the pipelined execution shown below, *** represents a stall when an
instruction cannot be fetched because a load or store instruction is using the mem-
ory in that cycle. Cycles are represented from left to right, and for each instruction
we show the pipeline stage it is in during that cycle:

Instruction Pipeline stage Cycles

a. lw $1,40($6)
beq $2,$0,Lbl
add $2,$3,$4
sw $3,50($4)

IF ID EX MEM WB
 IF ED EX MEM WB
 IF ID EX MEM WB
 *** IF ID EX MEM WB

9

b. lw $5,-16($5)
sw $4,-16($4)
lw $3,-20($4)
beq $2,$0,Lbl
add $5,$1,$4

IF ID EX MEM WB
 IF ED EX MEM WB
 IF ID EX MEM WB
 *** *** *** IF ID EX MEM WB
 IF ID EX MEM WB

12

We can not add nops to the code to eliminate this hazard—nops need to be fetched
just like any other instructions, so this hazard must be addressed with a hardware
hazard detection unit in the processor.

 Chapter 4 Solutions S131

4.14.2 This change only saves one cycle in an entire execution without data
 hazards (such as the one given). This cycle is saved because the last instruction fi n-
ishes one cycle earlier (one less stage to go through). If there were data hazards from
loads to other instruction, the change would help eliminate some stall cycles.

Instructions
Executed

Cycles with 5
stages

Cycles with
4 stages Speed-up

a. 4 4 + 4 = 8 3 + 4 = 7 8/7 = 1.14

b. 5 4 + 5 = 9 3 + 5 = 8 9/8 = 1.13

4.14.3 Stall-on-branch delays the fetch of the next instruction until the branch
is executed. When branches execute in the EXE stage, each branch causes two stall
cycles. When branches execute in the ID stage, each branch only causes one stall
cycle. Without branch stalls (e.g., with perfect branch prediction) there are no stalls,
and the execution time is 4 plus the number of executed instructions. We have:

Instructions
Executed

Branches
Executed

Cycles with
branch in EXE

Cycles with
branch in ID Speed-up

a. 4 1 4 + 4 + 1 × 2 = 10 4 + 4 + 1 × 1 = 9 10/9 = 1.11

b. 5 1 4 + 5 + 1 × 2 = 11 4 + 5 + 1 × 1 = 10 11/10 = 1.10

4.14.4 The number of cycles for the (normal) 5-stage and the (combined EX/
MEM) 4-stage pipeline is already computed in 4.14.2. The clock cycle time is equal
to the latency of the longest-latency stage. Combining EX and MEM stages affects
clock time only if the combined EX/MEM stage becomes the longest-latency stage:

Cycle time
with 5 stages

Cycle time
with 4 stages Speed-up

a. 130ps (MEM) 150ps (MEM + 20ps) (8 × 130)/(7 × 150) = 0.99

b. 220ps (MEM) 240ps (MEM + 20ps) (9 × 220)/(8 × 240) = 1.03

4.14.5

New ID
latency

New EX
latency

New cycle
time

Old cycle
time Speed-up

a. 180ps 80ps 180ps (ID) 130ps (MEM) (10 × 130)/(9 × 180) = 0.80

b. 150ps 160ps 220ps (MEM) 220ps (MEM) (11 × 220)/(10 × 220) = 1.10

4.14.6 The cycle time remains unchanged: a 20ps reduction in EX latency has no
effect on clock cycle time because EX is not the longest-latency stage. The change

S132 Chapter 4 Solutions

does affect execution time because it adds one additional stall cycle to each branch.
Because the clock cycle time does not improve but the number of cycles increases,
the speed-up from this change will be below 1 (a slowdown). In 4.14.3 we already
computed the number of cycles when branch is in EX stage. We have:

Cycles with branch
in EX

Execution time
(branch in EX)

Cycles with branch
in MEM

Execution time
(branch in MEM) Speed-up

a. 4 + 4 + 1 × 2 = 10 10 × 130ps = 1300ps 4 + 4 + 1 × 3 = 11 11 × 130ps = 1430ps 0.91

b. 4 + 5 + 1 × 2 = 11 11 × 220ps = 2420ps 4 + 5 + 1 × 3 = 12 12 × 220ps = 2640ps 0.92

Solution 4.15
4.15.1

a. This instruction behaves like a load with a zero offset until it fetches the value from memory.
The pre-ALU Mux must have another input now (zero) to allow this. After the value is read from
memory in the MEM stage, it must be compared against zero. This must either be done quickly
in the WB stage, or we must add another stage between MEM and WB. The result of this zero-
comparison must then be used to control the branch Mux, delaying the selection signal for the
branch Mux until the WB stage.

b. We need to compute the memory address using two register values, so the address
computation for SWI is the same as the value computation for the ADD instruction. However,
now we need to read a third register value, so Registers must be extended to support a another
read register input and another read data output and a Mux must be added in EX to select the
Data Memory’s write data input between this value and the value for the normal SW instruction.

4.15.2

a. We need to add one more bit to the control signal for the pre-ALU Mux. We also need a control
signal similar to the existing “Branch” signal to control whether or not the new zero-compare
result is allowed to change the PC.

b. We need a control signal to control the new Mux in the EX stage.

4.15.3

a. This instruction introduces a new control hazard. The new PC for this branch is computed only
after the Mem stage. If a new stage is added after MEM, this either adds new forwarding paths
(from the new stage to EX) or (if there is no forwarding) makes a stall due to a data hazard one
cycle longer.

b. This instruction does not affect hazards. It modifi es no registers, so it causes no data hazards.
It is not a branch instruction, so it produces no control hazards. With the added third register
read port, it creates no new resource hazards, either.

 Chapter 4 Solutions S133

4.15.4

a. lw Rtmp,0(Rs)
beq Rt,$0,Label

E.g., BEZI can be used when trying to fi nd the length of a
zero-terminated array.

b. add Rtmp,Rs,Rt
sw Rd,0(Rtmp)

E.g., SWI can be used to store to an array element, where
the array begins at address Rt and Rs is used as an
index into the array.

4.15.5 The instruction can be translated into simple MIPS-like micro-operations
(see 4.15.4 for a possible translation). These micro-operations can then be executed
by the processor with a “normal” pipeline.

4.15.6 We will compute the execution time for every replacement interval. The
old execution time is simply the number of instruction in the replacement interval
(CPI of 1). The new execution time is the number of instructions after we made the
replacement, plus the number of added stall cycles. The new number of instruc-
tions is the number of instructions in the original replacement interval, plus the
new instruction, minus the number of instructions it replaces:

New execution time Old execution time Speed-up

a. 20 − (2 − 1) + 1 = 20 20 1.00

b. 60 − (3 − 1) + 0 = 58 60 1.03

Solution 4.16
4.16.1 For every instruction, the IF/ID register keeps the PC + 4 and the instruc-
tion word itself. The ID/EX register keeps all control signals for the EX, MEM,
and WB stages, PC + 4, the two values read from Registers, the sign-extended low-
ermost 16 bits of the instruction word, and Rd and Rt fi elds of the instruction
word (even for instructions whose format does not use these fi elds). The EX/MEM
register keeps control signals for MEM and WB stages, the PC + 4 + Offset (where
Offset is the sign-extended lowermost 16 bits of the instructions, even for instruc-
tions that have no offset fi eld), the ALU result and the value of its Zero output, the
value that was read from the second register in the ID stage (even for instructions
that never need this value), and the number of the destination register (even for
instructions that need no register writes; for these instructions the number of the
destination register is simply a “random” choice between Rd or Rt). The MEM/WB
register keeps the WB control signals, the value read from memory (or a “random”
value if there was no memory read), the ALU result, and the number of the destina-
tion register.

S134 Chapter 4 Solutions

4.16.2

Need to be read Actually read

a. $6 $6, $1

b. $5 $5 (twice)

4.16.3

EX MEM

a. 40 + $6 Load value from memory

b. $5 + $5 Nothing

4.16.4

Loop

a. 2:add $5,$5,$8
2:add $6,$6,$8
2:sw $1,20($5)
2:beq $1,$0,Loop
3:lw $1,40($6)
3:add $5,$5,$8
3:add $6,$6,$8
3:sw $1,20($5)
3:beq $1,$0,Loop

WB
MEM WB
EX MEM WB
ID EX MEM WB
IF ID EX MEM WB
 IF ID EX MEM
 IF ID EX
 IF ID
 IF

b. sw $0,0($1)
sw $0,4($1)
add $2,$2,$4
beq $2,$0,Loop
add $1,$2,$3
sw $0,0($1)
sw $0,4($1)
add $2,$2,$4
beq $2,$0,Loop

WB
MEM WB
EX MEM WB
ID EX MEM WB
IF ID EX MEM WB
 IF ID EX MEM
 IF ID EX
 IF ID
 IF

4.16.5 In a particular clock cycle, a pipeline stage is not doing useful work if it is
stalled or if the instruction going through that stage is not doing any useful work
there. In the pipeline execution diagram from 4.16.4, a stage is stalled if its name is
not shown for a particular cycles, and stages in which the particular instruction is
not doing useful work are marked in red. Note that a BEQ instruction is doing use-
ful work in the MEM stage, because it is determining the correct value of the next
instruction’s PC in that stage. We have:

 Chapter 4 Solutions S135

Cycles per loop iteration
Cycles in which all stages

do useful work

% of cycles in which all
stages do useful work

a. 5 1 20%

b. 5 2 40%

4.16.6 The address of that fi rst instruction of the third iteration (PC + 4 for the
beq from the previous iteration) and the instruction word of the beq from the
previous iteration.

Solution 4.17
4.17.1 Of all these instructions, the value produced by this adder is actually used
only by a beq instruction when the branch is taken. We have:

a. 15% (60% of 25%)

b. 9% (60% of 15%)

4.17.2 Of these instructions, only add needs all three register ports (reads two
registers and write one). beq and sw does not write any register, and lw only uses
one register value. We have:

a. 50%

b. 30%

4.17.3 Of these instructions, only lw and sw use the data memory. We have:

a. 25% (15% + 10%)

b. 55% (35% + 20%)

4.17.4 The clock cycle time of a single-cycle is the sum of all latencies for the
logic of all fi ve stages. The clock cycle time of a pipelined datapath is the maximum
latency of the fi ve stage logic latencies, plus the latency of a pipeline register that
keeps the results of each stage for the next stage. We have:

Single-cycle Pipelined Speed-up

a. 500ps 140ps 3.57

b. 730ps 230ps 3.17

4.17.5 The latency of the pipelined datapath is unchanged (the maximum stage
latency does not change). The clock cycle time of the single-cycle datapath is the

S136 Chapter 4 Solutions

sum of logic latencies for the four stages (IF, ID, WB, and the combined EX + MEM
stage). We have:

Single-cycle Pipelined

a. 410ps 140ps

b. 560ps 230ps

4.17.6 The clock cycle time of the two pipelines (5-stage and 4-stage) as explained
for 4.17.5. The number of instructions increases for the 4-stage pipeline, so the
speed-up is below 1 (there is a slowdown):

Instructions with 5-stage Instructions with 4-stage Speed-up

a. 1.00 × I 1.00 × I + 0.5 × (0.15 + 0.10) × I = 1.125 × I 0.89

b. 1.00 × I 1.00 × I + 0.5 × (0.35 + 0.20) × I = 1.275 × I 0.78

Solution 4.18
4.18.1 No signals are asserted in IF and ID stages. For the remaining three stages
we have:

EX MEM WB

a. ALUSrc = 0, ALUOp = 10,
RegDst = 1

Branch = 0, MemWrite = 0,
MemRead = 0

MemtoReg = 1, RegWrite = 1

b. ALUSrc = 0, ALUOp = 10,
RegDst = 1

Branch = 0, MemWrite = 0,
MemRead = 0

MemtoReg = 1, RegWrite = 1

4.18.2 One clock cycle.

4.18.3 The PCSrc signal is 0 for this instruction. The reason against generating
the PCSrc signal in the EX stage is that the and must be done after the ALU com-
putes its Zero output. If the EX stage is the longest-latency stage and the ALU out-
put is on its critical path, the additional latency of an AND gate would increase the
clock cycle time of the processor. The reason in favor of generating this signal in the
EX stage is that the correct next-PC for a conditional branch can be computed one
cycle earlier, so we can avoid one stall cycle when we have a control hazard.

4.18.4

Control signal 1 Control signal 2

a. Generated in ID, used in EX Generated in ID, used in WB

b. Generated in ID, used in MEM Generated in ID, used in WB

 Chapter 4 Solutions S137

4.18.5

a. R-type instructions

b. Loads.

4.18.6 Signal 2 goes back though the pipeline. It affects execution of instructions
that execute after the one for which the signal is generated, so it is not a time-travel
paradox.

Solution 4.19
4.19.1 Dependences to the 1st next instruction result in 2 stall cycles, and the stall
is also 2 cycles if the dependence is to both 1st and 2nd next instruction. Depen-
dences to only the 2nd next instruction result in one stall cycle. We have:

CPI Stall Cycles

a. 1 + 0.45 × 2 + 0.05 × 1 = 1.95 49% (0.95/1.95)

b. 1 + 0.40 × 2 + 0.10 × 1 = 1.9 47% (0.9/1.9)

4.19.2 With full forwarding, the only RAW data dependences that cause stalls are
those from the MEM stage of one instruction to the 1st next instruction. Even this
dependences causes only one stall cycle, so we have:

CPI Stall Cycles

a. 1 + 0.25 = 1.25 20% (0.25/1.25)

b. 1 + 0.20 = 1.20 17% (0.20/1.20)

4.19.3 With forwarding only from the EX/MEM register, EX to 1st dependences
can be satisfi ed without stalls but EX to 2nd and MEM to 1st dependences incur a
one-cycle stall. With forwarding only from the MEM/WB register, EX to 2nd depen-
dences incur no stalls. MEM to 1st dependences still incur a one-cycle stall (no time
travel), and EX to 1st dependences now incur one stall cycle because we must wait
for the instruction to complete the MEM stage to be able to forward to the next
instruction. We compute stall cycles per instructions for each case as follows:

EX/MEM MEM/WB Fewer stall cycles with

a. 0.10 + 0.05 + 0.25 = 0.40 0.10 + 0.10 + 0.25 = 0.45 EX/MEM

b. 0.05 + 0.10 + 0.20 = 0.35 0.15 + 0.05 + 0.20 = 0.40 EX/MEM

S138 Chapter 4 Solutions

4.19.4 In 4.19.1 and 4.19.2 we have already computed the CPI without forwarding
and with full forwarding. Now we compute time per instruction by taking into
account the clock cycle time:

Without forwarding With forwarding Speed-up

a. 1.95 × 100ps = 195ps 1.25 × 110ps = 137.5ps 1.42

b. 1.90 × 300ps = 570ps 1.20 × 350ps = 420ps 1.36

4.19.5 We already computed the time per instruction for full forwarding in
4.19.4. Now we compute time-per instruction with time-travel forwarding and the
speed-up over full forwarding:

With full forwarding Time-travel forwarding Speed-up

a. 1.25 × 110ps = 137.5ps 1 × 210ps = 210ps 0.65

b. 1.20 × 350ps = 420ps 1 × 450ps = 450ps 0.93

4.19.6

EX/MEM MEM/WB Shorter time per instruction with

a. 1.40 × 100ps = 140ps 1.45 × 100ps = 145ps EX/MEM

b. 1.35 × 320ps = 432ps 1.40 × 310ps = 434ps EX/MEM

Solution 4.20
4.20.1

Instruction sequence RAW WAR WAW

a. I1: lw $1,40($2)
I2: add $2,$3,$3
I3: add $1,$1,$2
I4: sw $1,20($2)

($1) I1 to I3
($2) I2 to I3, I4
($1) I3 to I4

($2) I1 to I2 ($1) I1 to I3

b. I1: add $1,$2,$3
I2: sw $2,0($1)
I3: lw $1,4($2)
I4: add $2,$2,$1

($1) I1 to I2
($1) I3 to I4

($2) I1, I2, I3 to I4
($1) I1, I2 to I3

($1) I1 to I3

4.20.2 Only RAW dependences can become data hazards. With forwarding,
only RAW dependences from a load to the very next instruction become hazards.

 Chapter 4 Solutions S139

 Without forwarding, any RAW dependence from an instruction to one of the
 following three instructions becomes a hazard:

Instruction sequence With forwarding Without forwarding

a. I1: lw $1,40($2)
I2: add $2,$3,$3
I3: add $1,$1,$2
I4: sw $1,20($2)

($1) I1 to I3
($2) I2 to I3, I4
($1) I3 to I4

b. I1: add $1,$2,$3
I2: sw $2,0($1)
I3: lw $1,4($2)
I4: add $2,$2,$1

($1) I3 to I4 ($1) I1 to I2
($1) I3 to I4

4.20.3 With forwarding, only RAW dependences from a load to the next two
instructions become hazards because the load produces its data at the end of the
second MEM stage. Without forwarding, any RAW dependence from an instruc-
tion to one of the following 4 instructions becomes a hazard:

Instruction sequence With forwarding RAW

a. I1: lw $1,40($2)
I2: add $2,$3,$3
I3: add $1,$1,$2
I4: sw $1,20($2)

($1) I1 to I3 ($1) I1 to I3
($2) I2 to I3, I4
($1) I3 to I4

b. I1: add $1,$2,$3
I2: sw $2,0($1)
I3: lw $1,4($2)
I4: add $2,$2,$1

($1) I3 to I4 ($1) I1 to I2
($1) I3 to I4

4.20.4

Instruction sequence RAW

a. I1: lw $1,40($2)
I2: add $2,$3,$3
I3: add $1,$1,$2
I4: sw $1,20($2)

($1) I1 to I3 (0 overrides 1)
($2) I2 to I3 (2000 overrides 31)

b. I1: add $1,$2,$3
I2: sw $2,0($1)
I3: lw $1,4($2)
I4: add $2,$2,$1

($1) I1 to I2 (2563 overrides 63)

4.20.5 A register modifi cation becomes “visible” to the EX stage of the following
instructions only two cycles after the instruction that produces the register value
leaves the EX stage. Our forwarding-assuming hazard detection unit only adds a

S140 Chapter 4 Solutions

one-cycle stall if the instruction that immediately follows a load is dependent on
the load. We have:

Instruction sequence
with forwarding stalls

Execution without
forwarding Values after execution

a. I1: lw $1,40($2)
I2: add $2,$3,$3
I3: add $1,$1,$2
I4: sw $1,20($2)

$1 = 0 (I4 and after)

$2 = 2000 (after I4)
$1 = 32 (after I4)

$0 = 0
$1 = 32
$2 = 2000
$3 = 1000

b. I1: add $1,$2,$3
I2: sw $2,0($1)
I3: lw $1,4($2)
 Stall
I4: add $2,$2,$1

$1 = 2563 (Stall and after)

$1 = 0 (after I4)

$2 = 2626 (after I4)

$0 = 0
$1 = 0
$2 = 2626
$3 = 2500

4.20.6

Instruction sequence
with forwarding stalls Correct execution Sequence with NOPs

a. I1: lw $1,40($2)
I2: add $2,$3,$3
I3: add $1,$1,$2
I4: sw $1,20($2)

I1: lw $1,40($2)
I2: add $2,$3,$3
 Stall
 Stall
I3: add $1,$1,$2
 Stall
 Stall
I4: sw $1,20($2)

lw $1,40($2)
add $2,$3,$3
nop
nop
add $1,$1,$2
nop
nop
sw $1,20($2)

b. I1: add $1,$2,$3
I2: sw $2,0($1)
I3: lw $1,4($2)
 Stall
I4: add $2,$2,$1

I1: add $1,$2,$3
 Stall
 Stall
I2: sw $2,0($1)
I3: lw $1,4($2)
 Stall
 Stall
I4: add $2,$2,$1

add $1,$2,$3
nop
nop
sw $2,0($1)
lw $1,4($2)
nop
nop
add $2,$2,$1

 Chapter 4 Solutions S141

Solution 4.21
4.21.1

a. lw $1,40($6)
nop
nop
add $2,$3,$1
add $1,$6,$4
nop
sw $2,20($4)
and $1,$1,$4

b. add $1,$5,$3
nop
nop
sw $1,0($2)
lw $1,4($2)
nop
nop
add $5,$5,$1
sw $1,0($2)

4.21.2 We can move up an instruction by swapping its place with another instruc-
tion that has no dependences with it, so we can try to fi ll some nop slots with such
instructions. We can also use R7 to eliminate WAW or WAR dependences so we can
have more instructions to move up.

a. I1: lw $7,40($6)
I3: add $1,$6,$4
 nop
I2: add $2,$3,$7
I5: and $1,$1,$4
 nop
I4: sw $2,20($4)

Produce $7 instead of $1
Moved up to fi ll NOP slot

Use $7 instead of $1
Moved up to fi ll NOP slot

b. I1: add $7,$5,$3
I3: lw $1,4($2)
 nop
I2: sw $7,0($2)
I4: add $5,$5,$1
I5: sw $1,0($2)

Produce $7 instead of $1
Moved up to fi ll NOP slot

Use $7 instead of $1

S142 Chapter 4 Solutions

4.21.3 With forwarding, the hazard detection unit is still needed because it must
insert a one-cycle stall whenever the load supplies a value to the instruction that
immediately follows that load. Without the hazard detection unit, the instruction
that depends on the immediately preceding load gets the stale value the register had
before the load instruction.

a. I2 gets the value of $1 from before I1, not from I1 as it should.

b. I4 gets the value of $1 from I1, not from I3 as it should.

4.21.4 The outputs of the hazard detection unit are PCWrite, IF/IDWrite, and
ID/EXZero (which controls the Mux after the output of the Control unit). Note
that IF/IDWrite is always equal to PCWrite, and ED/ExZero is always the opposite
of PCWrite. As a result, we will only show the value of PCWrite for each cycle. The
outputs of the forwarding unit is ALUin1 and ALUin2, which control Muxes which
select the fi rst and second input of the ALU. The three possible values for ALUin1
or ALUin2 are 0 (no forwarding), 1 (forward ALU output from previous instruc-
tion), or 2 (forward data value for second-previous instruction). We have:

Instruction
sequence

First fi ve cycles

 1 2 3 4 5 Signals

a. lw $1,40($6)
add $2,$3,$1
add $1,$6,$4
sw $2,20($4)
and $1,$1,$4

 IF ID EX MEM WB
 IF ID *** EX
 IF *** ID
 IF

1: PCWrite = 1, ALUin1 = X, ALUin2 = X
2: PCWrite = 1, ALUin1 = X, ALUin2 = X
3: PCWrite = 1, ALUin1 = 0, ALUin2 = 0
4: PCWrite = 0, ALUin1 = X, ALUin2 = X
5: PCWrite = 1, ALUin1 = 0, ALUin2 = 2

b. add $1,$5,$3
sw $1,0($2)
lw $1,4($2)
add $5,$5,$1
sw $1,0($2)

 IF ID EX MEM WB
 IF ID EX MEM
 IF ID EX
 IF ID
 IF

1: PCWrite = 1, ALUin1 = X, ALUin2 = X
2: PCWrite = 1, ALUin1 = X, ALUin2 = X
3: PCWrite = 1, ALUin1 = 0, ALUin2 = 0
4: PCWrite = 1, ALUin1 = 0, ALUin2 = 1
5: PCWrite = 1, ALUin1 = 0, ALUin2 = 0

4.21.5 The instruction that is currently in the ID stage needs to be stalled if it
depends on a value produced by the instruction in the EX or the instruction in the
MEM stage. So we need to check the destination register of these two instructions.
For the instruction in the EX stage, we need to check Rd for R-type instructions
and Rd for loads. For the instruction in the MEM stage, the destination register
is already selected (by the Mux in the EX stage) so we need to check that reg-
ister number (this is the bottommost output of the EX/MEM pipeline register).
The additional inputs to the hazard detection unit are register Rd from the ID/EX
 pipeline register and the output number of the output register from the EX/MEM

 Chapter 4 Solutions S143

pipeline register. The Rt fi eld from the ID/EX register is already an input of the
hazard detection unit in Figure 4.60.

No additional outputs are needed. We can stall the pipeline using the three output
signals that we already have.

4.21.6 As explained for 4.21.5, we only need to specify the value of the PCWrite
signal, because IF/IDWrite is equal to PCWrite and the ID/EXzero signal is its
opposite. We have:

Instruction sequence
First fi ve cycles

 1 2 3 4 5 Signals

a. lw $1,40($6)
add $2,$3,$1
add $1,$6,$4
sw $2,20($4)
and $1,$1,$4

 IF ID EX MEM WB
 IF ID *** ***
 IF *** ***

1: PCWrite = 1
2: PCWrite = 1
3: PCWrite = 1
4: PCWrite = 0
5: PCWrite = 0

b. add $1,$5,$3
sw $1,0($2)
lw $1,4($2)
add $5,$5,$1
sw $1,0($2)

 IF ID EX MEM WB
 IF ID *** ***
 IF *** ***

1: PCWrite = 1
2: PCWrite = 1
3: PCWrite = 1
4: PCWrite = 0
5: PCWrite = 0

Solution 4.22
4.22.1

Executed Instructions

Pipeline Cycles

1 2 3 4 5 6 7 8 9 10 11 12 13 14

a. lw $1,40($6)
beq $2,$3,Label2 (T)
beq $1,$2,Label1 (NT)
sw $2,20($4)
and $1,$1,$4

IF ID
IF

EX
ID
IF

MEM
EX
ID

WB
MEM
EX

WB
MEM
IF

WB
ID
IF

EX
ID

MEM
EX

WB
MEM WB

12 13 14

b. add $1,$5,$3
sw $1,0($2)
add $2,$2,$3
beq $2,$4,Label1 (NT)
add $5,$5,$1
sw $1,0($2)

IF ID
IF

EX
ID
IF

MEM
EX
ID
IF

WB
MEM
EX
ID

WB
MEM
EX

WB
MEM
IF

WB
ID
IF

EX
ID

MEM
EX

WB
MEM WB

13 14

S144 Chapter 4 Solutions

4.22.2

Executed Instructions

Pipeline Cycles

1 2 3 4 5 6 7 8 9 10 11 12 13 14

a. lw $1,40($6)
beq $2,$3,Label2 (T)
add $1,$6,$4
beq $1,$2,Label1 (NT)
sw $2,20($4)
and $1,$1,$4

IF ID
IF

EX
ID
IF

MEM
EX
ID
IF

WB
MEM
EX
ID
IF

WB
MEM

WB
EX
ID

MEM
EX
IF

WB
MEM
ID

WB
EX MEM WB

13 14

b. add $1,$5,$3
sw $1,0($2)
add $2,$2,$3
beq $2,$4,Label1 (NT)
add $5,$5,$1
sw $1,0($2)

IF ID
IF

EX
ID
IF

MEM
EX
ID
IF

WB
MEM
EX
ID
IF

WB
MEM
EX
ID

WB
MEM
EX
IF

WB
MEM
ID

WB
EX MEM WB

13 14

4.22.3

a. Label1: lw $1,40($6)
 seq $8,$2,$3
 bnez $8,Label2 ; Taken
 add $1,$6,$4
Label2: seq $8,$1,$2
 bnez $8,Label1 ; Not taken
 sw $2,20($4)
 and $1,$1,$4

b. add $1,$5,$3
Label1: sw $1,0($2)
 add $2,$2,$3
 bez $8,$2,$4
 bnez $8,Label1 ; Not taken
 add $5,$5,$1
 sw $1,0($2)

4.22.4 The hazard detection logic must detect situations when the branch
depends on the result of the previous R-type instruction, or on the result of two
previous loads. When the branch uses the values of its register operands in its ID
stage, the R-type instruction’s result is still being generated in the EX stage. Thus
we must stall the processor and repeat the ID stage of the branch in the next cycle.
Similarly, if the branch depends on a load that immediately precedes it, the result
of the load is only generated two cycles after the branch enters the ID stage, so we
must stall the branch for two cycles. Finally, if the branch depends on a load that
is the second-previous instruction, the load is completing its MEM stage when the
branch is in its ID stage, so we must stall the branch for one cycle. In all three cases,
the hazard is a data hazard.

 Chapter 4 Solutions S145

Note that in all three cases we assume that the values of preceding instructions are
forwarded to the ID stage of the branch if possible.

4.22.5 For 4.22.1 we have already shows the pipeline execution diagram for the
case when branches are executed in the EX stage. The following is the pipeline dia-
gram when branches are executed in the ID stage, including new stalls due to data
dependences described for 4.22.4:

Executed Instructions

Pipeline Cycles

1 2 3 4 5 6 7 8 9 10 11 12 13 14

a. lw $1,40($6)
beq $2,$3,Label2 (T)
beq $1,$2,Label1 (NT)
sw $2,20($4)
and $1,$1,$4

IF ID
IF

EX
ID
IF

MEM
EX

WB
MEM
ID
IF

WB
EX
ID
IF

MEM
EX
ID

WB
MEM
EX

WB
MEM WB

12 13 14

b. add $1,$5,$3
sw $1,0($2)
add $2,$2,$3
beq $2,$4,Label1 (NT)
add $5,$5,$1
sw $1,0($2)

IF ID
IF

EX
ID
IF

MEM
EX
ID
IF

WB
MEM
EX

WB
MEM
ID

WB
EX
IF

MEM
ID
IF

WB
EX
ID

MEM
EX

WB
MEM WB

13 14

Now the speed-up can be computed as:

a. 11/10 = 1.1

b. 12/12 = 1

4.22.6 Branch instructions are now executed in the ID stage. If the branch
 instruction is using a register value produced by the immediately preceding instruc-
tion, as we described for 4.22.4 the branch must be stalled because the preceding
instruction is in the EX stage when the branch is already using the stale register
values in the ID stage. If the branch in the ID stage depends on an R-type instruc-
tion that is in the MEM stage, we need forwarding to ensure correct execution of
the branch. Similarly, if the branch in the ID stage depends on an R-type of load
instruction in the WB stage, we need forwarding to ensure correct execution of
the branch. Overall, we need another forwarding unit that takes the same inputs
as the one that forwards to the EX stage. The new forwarding unit should control
two Muxes placed right before the branch comparator. Each Mux selects between
the value read from Registers, the ALU output from the EX/MEM pipeline register,
and the data value from the MEM/WB pipeline register. The complexity of the new
forwarding unit is the same as the complexity of the existing one.

S146 Chapter 4 Solutions

Solution 4.23
4.23.1 Each branch that is not correctly predicted by the always-taken predictor
will cause 3 stall cycles, so we have:

Extra CPI

a. 3 × (1 – 0.40) × 0.15 = 0.27

b. 3 × (1 – 0.60) × 0.10 = 0.12

4.23.2 Each branch that is not correctly predicted by the always-not-taken predictor
will cause 3 stall cycles, so we have:

Extra CPI

a. 3 × (1 – 0.60) × 0.15 = 0.18

b. 3 × (1 – 0.40) × 0.10 = 0.18

4.23.3 Each branch that is not correctly predicted by the 2-bit predictor will
cause 3 stall cycles, so we have:

Extra CPI

a. 3 × (1 – 0.80) × 0.15 = 0.090

b. 3 × (1 – 0.95) × 0.10 = 0.015

4.23.4 Correctly predicted branches had CPI of 1 and now they become ALU
instructions whose CPI is also 1. Incorrectly predicted instructions that are con-
verted also become ALU instructions with a CPI of 1, so we have:

CPI without conversion CPI with conversion Speed-up from conversion

a. 1 + 3 × (1 – 0.80) × 0.15 = 1.090 1 + 3 × (1 – 0.80) × 0.15 × 0.5 = 1.045 1.090/1.045 = 1.043

b. 1 + 3 × (1 – 0.95) × 0.10 = 1.015 1 + 3 × (1 – 0.95) × 0.10 × 0.5 = 1.008 1.015/1.008 = 1.007

4.23.5 Every converted branch instruction now takes an extra cycle to execute,
so we have:

CPI without
conversion

Cycles per original
instruction with conversion

Speed-up from
conversion

a. 1.090 1 + (1 + 3 × (1 – 0.80)) × 0.15 × 0.5 = 1.120 1.090/1.120 = 0.97

b. 1.015 1 + (1 + 3 × (1 – 0.95)) × 0.10 × 0.5 = 1.058 1.015/1.058 = 0.96

 Chapter 4 Solutions S147

4.23.6 Let the total number of branch instructions executed in the program be B.
Then we have:

Correctly
predicted

Correctly predicted
non-loop-back

Accuracy on
non-loop-back branches

a. B × 0.80 B × 0.00 (B × 0.00)/(B × 0.20) = 0.00 (00%)

b. B × 0.95 B × 0.15 (B × 0.15)/(B × 0.20) = 0.75 (75%)

Solution 4.24
4.24.1

Always-taken Always not-taken

a. 3/4 = 75% 1/4 = 25%

b. 3/5 = 60% 2/5 = 40%

4.24.2

Outcomes
Predictor value

at time of prediction
Correct or
Incorrect Accuracy

a. T, T, NT, T 0, 1, 2, 1 I, I, I, I 0%

b. T, T, T, NT 0, 1, 2, 3 I, I, C, I 25%

4.24.3 The fi rst few recurrences of this pattern do not have the same accuracy as
the later ones because the predictor is still warming up. To determine the accuracy
in the “steady state”, we must work through the branch predictions until the predic-
tor values start repeating (i.e. until the predictor has the same value at the start of
the current and the next recurrence of the pattern).

Outcomes
Predictor value

at time of prediction
Correct or Incorrect

(in steady state)
Accuracy in
steady state

a. T, T, NT, T 1st occurrence: 0, 1, 2, 1
2nd occurrence: 2, 3, 2, 3
3rd occurrence: 3, 3, 3, 2
4th occurrence: 3, 3, 3, 2

C, C, I, C 75%

b. T, T, T, NT, NT 1st occurrence: 0, 1, 2, 3, 2
2nd occurrence: 1, 2, 3, 3, 2
3rd occurrence: 1, 2, 3, 3, 2

C, C, C, I, I 60%

S148 Chapter 4 Solutions

4.24.4 The predictor should be an N-bit shift register, where N is the number of
branch outcomes in the target pattern. The shift register should be initialized with the
pattern itself (0 for NT, 1 for T), and the prediction is always the value in the leftmost
bit of the shift register. The register should be shifted after each predicted branch.

4.24.5 Since the predictor’s output is always the opposite of the actual outcome
of the branch instruction, the accuracy is zero.

4.24.6 The predictor is the same as in 4.24.4, except that it should compare its
prediction to the actual outcome and invert (logical not) all the bits in the shift
register if the prediction is incorrect. This predictor still always perfectly predicts
the given pattern. For the opposite pattern, the fi rst prediction will be incorrect,
so the predictor’s state is inverted and after that the predictions are always correct.
Overall, there is no warm-up period for the given pattern, and the warm-up period
for the opposite pattern is only one branch.

Solution 4.25
4.25.1

Instruction 1 Instruction 2

a. Overfl ow (EX) Invalid target address (EX)

b. Invalid data address (MEM) No exceptions

4.25.2 The Mux that selects the next PC must have inputs added to it. Each input
is a constant address of an exception handler. The exception detectors must be
added to the appropriate pipeline stage and the outputs of these detectors must be
used to control the pre-PC Mux, and also to convert to nops instructions that are
already in the pipeline behind the exception-triggering instruction.

4.25.3 Instructions are fetched normally until the exception is detected. When the
exception is detected, all instructions that are in the pipeline after the fi rst instruc-
tion must be converted to nops. As a result, the second instruction never com-
pletes and does not affect pipeline state. In the cycle that immediately follows the
cycle in which the exception is detected, the processor will fetch the fi rst instruction
of the exception handler.

4.25.4

Handler address

a. 0xFFFFF000

b. 0x00000010

 Chapter 4 Solutions S149

The fi rst instruction word from the handler address is fetched in the cycle after the
one in which the original exception is detected. When this instruction is decoded in
the next cycle, the processor detects that the instruction is invalid. This exception is
treated just like a normal exception—it converts the instruction being fetched in that
cycle into a nop and puts the address of the Invalid Instruction handler into the PC
at the end of the cycle in which the Invalid Instruction exception is detected.

4.25.5 This approach requires us to fetch the address of the handler from mem-
ory. We must add the code of the exception to the address of the exception vector
table, read the handler’s address from memory, and jump to that address. One way
of doing this is to handle it like a special instruction that computer the address in
EX, loads the handler’s address in MEM, and sets the PC in WB.

4.25.6 We need a special instruction that allows us to move a value from the
(exception) Cause register to a general-purpose register. We must fi rst save the
 general-purpose register (so we can restore it later), load the Cause register into it,
add the address of the vector table to it, use the result as an address for a load that
gets the address of the right exception handler from memory, and fi nally jump to
that handler.

Solution 4.26
4.26.1 All exception-related signals are 0 in all stages, except the one in which the
exception is detected. For that stage, we show values of Flush signals for various
stages, and also the value of the signal that controls the Mux that supplies the PC
value.

Stage Signals

a. EX IF.Flush = ID.Flush = EX.Flush = 1, PCSel = Exc

b. MEM IF.Flush = ID.Flush = EX.Flush = MEM.Flush = 1, PCSel = Exc
This exception is detected in MEM, so we added MEM.Flush

4.26.2 The signals stored in the ID/EX stage are needed to execute the instruc-
tion if there are no exceptions. Figure 4.66 does not show it, but exception condi-
tions from various stages are also supplied as inputs to the Control unit. The signal
that goes directly to EX is EX.Flush and it is based on these exception condition
inputs, not on the opcode of the instruction that is in the ID stage. In particular, the
EX.Flush signal becomes 1 when the instruction in the EX stage triggers an excep-
tion and must be prevented from completing.

4.26.3 The disadvantage is that the exception handler begins executing one cycle
later. Also, an exception condition normally checked in MEM cannot be delayed
into WB, because at that time the instruction is updating registers and cannot be
prevented from doing so.

S150 Chapter 4 Solutions

4.26.4 When overfl ow is detected in EX, each exception results in a 3-cycle delay
(IF, ID, and EX are cancelled). By moving overfl ow into MEM, we add one more
cycle to this delay. To compute the speed-up, we compute execution time per
100,000 instructions:

Old clock
 cycle time

New clock
cycle time

Old time per
 100,000 instructions

New time per
 100,000

instructions Speed-up

a. 350ps 350ps 350ps × 100,003 350ps × 100,004 0.99999

b. 210ps 210ps 210ps × 100,003 210ps × 100,004 0.99999

4.26.5 Exception control (Flush) signals are not really generated in the EX stage.
They are generated by the Control unit, which is drawn as part of the ID stage, but
we could have a separate “Exception Control” unit to generate Flush signals and
this unit is not really a part of any stage.

4.26.6 Flush signals must be generated one Mux time before the end of the cycle.
However, their generation can only begin after exception conditions are generated.
For example, arithmetic overfl ow is only generated after the ALU operation in EX
is complete, which is usually in the later part of the clock cycle. As a result, the Con-
trol unit actually has very little time to generate these signals, and they can easily be
on the critical path that determines the clock cycle time.

Solution 4.27
4.27.1 When the invalid instruction (I3) is decoded, IF.Flush and ID.Flush sig-
nals are used to convert I3 and I4 into nops (marked with *). In the next cycle, in IF
we fetch the fi rst instruction of the exception handler, in ID we have a nop (instead
of I4, marked), in EX we have a nop (instead of I3), and I1 and I2 still continue
through the pipeline normally:

Branch and delay slot Pipeline

a. I1: beq $1,$0,Label
I2: sw $6,50($1)
I3: Invalid
I4: Something
I5: Handler

IF ID EX MEM WB
 IF ID EX MEM
 IF ID *EX
 IF *ID
 IF

b. I1: beq $5,$0,Label
I2: nor $5,$4,$3
I3: Invalid
I4: Something
I5: Handler

IF ID EX MEM WB
 IF ID EX MEM
 IF ID *EX
 IF *ID
 IF

 Chapter 4 Solutions S151

4.27.2 When I2 is in the MEM stage, it triggers an exception condition that results
in converting I2 and I5 into nops (I3 and I4 are already nops by then). In the next
cycle, we fetch I6, which is the fi rst instruction of the exception handler for the
exception triggered by I2.

Branch and delay slot Branch and delay slot

a. I1: beq $1,$0,Label
I2: sw $6,50($1)
I3: Invalid
I4: Something
I5: Handler 1
I6: Handler 2

IF ID EX MEM WB
 IF ID EX MEM *WB
 IF ID *EX *ME
 IF *ID *EX
 IF *ID
 IF

b. I1: beq $5,$0,Label
I2: nor $5,$4,$3
I3: Invalid
I4: Something
I5: Handler 1
I6: Handler 2

IF ID EX MEM WB
 IF ID EX MEM *WB
 IF ID *EX *ME
 IF *ID *EX
 IF *ID
 IF

4.27.3 The EPC is the PC + 4 of the delay slot instruction. As described in
 Section 4.9, the exception handler subtracts 4 from the EPC, so it gets the address
of the instruction that generated the exception (I2, the delay slot instruction). If the
exception handler decides to resume execution of the application, it will jump to
the I2. Unfortunately, this causes the program to continue as if the branch was not
taken, even if it was taken.

4.27.4 The processor cancels the store instruction and other instructions (from
the “Invalid instruction” exception handler) fetched after it, and then begins fetch-
ing instructions from the invalid data address handler. A major problem here is that
the new exception sets the EPC to the instruction address in the “Invalid instruction”
handler, overwriting the EPC value that was already there (address for continuing
the program). If the invalid data address handler repairs the problem and attempts
to continue the program, the “Invalid instruction” handler will be executed. How-
ever, if it manages to repair the problem and wants to continue the program, the
EPC it incorrect (it was overwritten before it could be saved). This is the reason why
exception handlers must be written carefully to avoid triggering exceptions them-
selves, at least until they have safely saved the EPC.

4.27.5 Not for store instructions. If we check for the address overfl ow in MEM,
the store is already writing data to memory in that cycle and we can no longer
“cancel” it. As a result, when the exception handler is called the memory is already
changed by the store instruction, and the handler can not observe the state of the
machine that existed before the store instruction.

S152 Chapter 4 Solutions

4.27.6 We must add two comparators to the EX stage, one that compares the
ALU result to WADDR, and another that compares the data value from Rt to
WVAL. If one of these comparators detects equality and the instruction is a store,
this triggers a “Watchpoint” exception. As discussed for 4.27.5, we cannot delay the
comparisons until the MEM stage because at that time the store is already done and
we need to stop the application at the point before the store happens.

Solution 4.28
4.28.1

a. add $1,$0,$0
Again: beq $1,$2,End
 add $6,$3,$1
 lw $7,0($6)
 add $8,$4,$1
 sw $7,0($8)
 addi $1,$1,1
 beq $0,$0,Again
End:

b. add $4,$0,$0
Again: add $1,$4,$6
 lw $2,0($1)
 lw $3,1($1)
 beq $2,$3,End
 sw $0,0($1)
 addi $4,$4,1
 beq $0,$0,Again
End:

 Chapter 4 Solutions S153

4.28.2

Instructions Pipeline

a. add $1,$0,$0
beq $1,$2,End
add $6,$3,$1
lw $7,0($6)
add $8,$4,$1
sw $7,0($8)
addi $1,$1,1
beq $0,$0,Again
beq $1,$2,End
add $6,$3,$1
lw $7,0($6)
add $8,$4,$1
sw $7,0($8)
addi $1,$1,1
beq $0,$0,Again
beq $1,$2,End

IF ID EX ME WB
IF ID ** EX ME WB
 IF ** ID EX ME WB
 IF ** ID ** EX ME WB
 IF ** ID EX ME WB
 IF ** ID ** EX ME WB
 IF ** ID EX ME WB
 IF ** ID ** EX ME WB
 IF ** ID EX ME WB
 IF ** ID ** EX ME WB
 IF ** ID EX ME WB
 IF ** ID EX ME WB
 IF ID EX ME WB
 IF ID EX ME WB
 IF ID EX ME WB
 IF ID ** EX ME WB

b. add $4,$0,$0
add $1,$4,$6
lw $2,0($1)
lw $3,1($1)
beq $2,$3,End
sw $0,0($1)
addi $4,$4,1
bew $0,$0,Again
add $1,$4,$6
lw $2,0($1)
lw $3,1($1)
beq $2,$3,End
sw $0,0($1)
addi $4,$4,1
bew $0,$0,Again
add $1,$4,$6
lw $2,0($1)
lw $3,1($1)
beq $2,$3,End

IF ID EX ME WB
IF ID ** EX ME WB
 IF ** ID EX ME WB
 IF ** ID ** EX ME WB
 IF ** ID ** EX ME WB
 IF ** ID ** EX ME WB
 IF ** ID EX ME WB
 IF ** ID ** EX ME WB
 IF ** ID EX ME WB
 IF ** ID ** EX ME WB
 IF ** ID EX ME WB
 IF ** ID ** ** EX ME WB
 IF ** ** ID EX ME WB
 IF ** ** ID EX ME WB
 IF ID EX ME WB
 IF ID ** EX ME WB
 IF ** ID EX ME WB
 IF ** ID ** EX ME WB
 IF ** ID ** EX ME WB

S154 Chapter 4 Solutions

4.28.3 The only way to execute 2 instructions fully in parallel is for a load/store to
execute together with another instruction. To achieve this, around each load/store
instruction we will try to put non-load/store instructions that have no dependences
with the load/store.

a. add $1,$0,$0
Again: beq $1,$2,End
 add $6,$3,$1
 add $8,$4,$1
 lw $7,0($6)
 addi $1,$1,1
 sw $7,0($8)
 beq $0,$0,Again
End:

b. add $4,$0,$0
Again: add $1,$4,$6
 lw $2,0($1)
 lw $3,1($1)
 beq $2,$3,End
 sw $0,0($1)
 addi $4,$4,1
 beq $0,$0,Again
End:

We have not changed anything. Note that the only
instruction without dependences to or from the two
loads is ADDI, and it cannot be moved above the branch
(then the loop would exit with the wrong value for i).

 Chapter 4 Solutions S155

4.28.4

Instructions Pipeline

a. add $1,$0,$0
beq $1,$2,End
add $6,$3,$1
add $8,$4,$1
lw $7,0($6)
addi $1,$1,1
sw $7,0($8)
beq $0,$0,Again
beq $1,$2,End
add $6,$3,$1
add $8,$4,$1
lw $7,0($6)
addi $1,$1,1
sw $7,0($8)
beq $0,$0,Again
beq $1,$2,End

IF ID EX ME WB
IF ID ** EX ME WB
 IF ** ID EX ME WB
 IF ** ID ** EX ME WB
 IF ** ID EX ME WB
 IF ** ID EX ME WB
 IF ID EX ME WB
 IF ID EX ME WB
 IF ID EX ME WB
 IF ID ** EX ME WB
 IF ** ID EX ME WB
 IF ** ID EX ME WB
 IF ID EX ME WB
 IF ID EX ME WB
 IF ID EX ME WB
 IF ID ** EX ME WB

b. add $4,$0,$0
add $1,$4,$6
lw $2,0($1)
lw $3,1($1)
beq $2,$3,End
sw $0,0($1)
addi $4,$4,1
bew $0,$0,Again
add $1,$4,$6
lw $2,0($1)
lw $3,1($1)
beq $2,$3,End
sw $0,0($1)
addi $4,$4,1
bew $0,$0,Again
add $1,$4,$6
lw $2,0($1)
lw $3,1($1)
beq $2,$3,End

IF ID EX ME WB
IF ID ** EX ME WB
 IF ** ID EX ME WB
 IF ** ID ** EX ME WB
 IF ** ID ** EX ME WB
 IF ** ID ** EX ME WB
 IF ** ID EX ME WB
 IF ** ID ** EX ME WB
 IF ** ID EX ME WB
 IF ** ID ** EX ME WB
 IF ** ID EX ME WB
 IF ** ID ** ** EX ME WB
 IF ** ** ID EX ME WB
 IF ** ** ID EX ME WB
 IF ID EX ME WB
 IF ID ** EX ME WB
 IF ** ID EX ME WB
 IF ** ID ** EX ME WB
 IF ** ID ** EX ME WB

S156 Chapter 4 Solutions

4.28.5

CPI for 1-issue CPI for 2-issue Speed-up

a. 1 (no data hazards) 0.86 (12 cycles for 14 instructions). In even-
numbered iterations the LW and the SW can
execute in parallel with the next instruction.

1.16

b. 1.14 (8 cycles per 7
instructions). There is 1 stall
cycle in each iteration due
to a data hazard between
LW and the next instruction
(BEQ).

1 (14 cycles for 14 instruction). Neither LW
instruction can execute in parallel with another
instruction, and the BEQ after the second LW
is stalled because it depends on the load.
However, SW always executes in parallel with
another instruction (alternating between BEQ
and ADDI).

1.14

4.28.6

CPI for 1-issue CPI for 2-issue Speed-up

a. 1 0.64 (9 cycles for 14 instructions). In odd-
numbered iterations ADD and LW cannot
execute in the same cycle because of a data
dependence, and then ADD and SW have the
same problem. The rest of the instructions can
execute in pairs.

1.56

b. 1.14 0.86 (12 cycles for 14 instructions). In all
iterations BEQ is stalled because it depends
on the second LW. In odd-numbered BEQ and
SW execute together, and so do ADDI and the
last BEQ. In even-numbered iterations SW and
ADDI execute together, and so do the last BEQ
and the fi rst ADD of the next iteration.

1.33

Solution 4.29
4.29.1 Note that all register read ports are active in every cycle, so 4 register reads
(2 instructions with 2 reads each) happen in every cycle. We determine the number
of cycles it takes to execute an iteration of the loop and the number of useful reads,
then divide the two. The number of useful register reads for an instruction is the
number of source register parameters minus the number of registers that are for-
warded from prior instructions. We assume that register writes happen in the fi rst
half of the cycle and the register reads happen in the second half.

 Chapter 4 Solutions S157

Loop Pipeline stages Useful reads % Useful

a. addi $5,$5,-4
beq $5,$0,Loop
lw $1,40($6)
add $5,$5,$1
sw $1,20($5)
addi $6,$6,4
addi $5,$5,-4
beq $5,$0,Loop

ID EX ME WB
ID ** EX ME WB
IF ** ID EX ME WB
IF ** ID ** ** EX ME WB
 IF ** ** ID EX ME WB
 IF ** ** ID EX ME WB
 IF ID EX ME WB
 IF ID ** EX ME WB

1
0 ($1, $5 fw)
1 ($5 fw)
1
0 ($5 fw)
1 ($5 fw)

17%
(4/(6 × 4))

b. addi $2,$2,4
beq $2,$0,Loop
add $1,$2,$3
sw $0,0($1)
addi $2,$2,4
beq $2,$0,Loop

ID EX ME WB
ID ** EX ME WB
IF ** ID EX ME WB
IF ** ID ** EX ME WB
 IF ** ID EX ME WB
 IF ** ID ** EX ME WB

1 ($2 fw)
1 ($1 fw)
1
1 ($2 fw)

25%
(4/(4 × 4))

4.29.2 The utilization of read ports is lower with a wider-issue processor:

Loop Pipeline stages Useful reads % Useful

a. addi $6,$6,4
addi $5,$5,-4
beq $5,$0,Loop
lw $1,40($6)
add $5,$5,$1
sw $1,20($5)
addi $6,$6,4
addi $5,$5,-4
beq $5,$0,Loop

ID EX ME WB
ID EX ME WB
ID ** EX ME WB
IF ** ID EX ME WB
IF ** ID ** ** EX ME WB
IF ** ID ** ** ** EX ME WB
 IF ** ** ** ID EX ME WB
 IF ** ** ** ID EX ME WB
 IF ** ** ** ID ** EX ME WB

0 ($6 fw)
0 ($1, $5 fw)
0 ($1, $5 fw)
1
0 ($5 fw)
1 ($5 fw)

5.6%
(2/(6 × 6))

b. sw $0,0($1)
addi $2,$2,4
beq $2,$0,Loop
add $1,$2,$3
sw $0,0($1)
addi $2,$2,4
beq $2,$0,Loop
add $1,$2,$3
sw $0,0($1)
addi $2,$2,4
beq $2,$0,Loop
add $1,$2,$3
sw $0,0($1)
addi $2,$2,4
beq $2,$0,Loop

ID EX ME WB
ID EX ME WB
ID ** EX ME WB
IF ** ID EX ME WB
IF ** ID ** EX ME WB
IF ** ID ** EX ME WB
 IF ** ID EX ME WB
 IF ** ID EX ME WB
 IF ** ID ** EX ME WB
 IF ** ID EX ME WB
 IF ** ID ** EX ME WB
 IF ** ID ** EX ME WB
 IF ** ID EX ME WB
 IF ** ID EX ME WB
 IF ** ID ** EX ME WB

1 ($2 fw)
1 ($1 fw)
0 ($2 fw)
1 ($2 fw)
1 ($2 fw)
1 ($1 fw)
1
1 ($2 fw)
1 ($2 fw)
1 ($1 fw)
0 ($2 fw)
1 ($2 fw)

21%
(10/(8 × 6))

4.29.3

2 ports used 3 ports used

a. 1 cycle out of 6 (16.7%) Never (0%)

b. 4 cycles out of 8 (50%) Never (0%)

S158 Chapter 4 Solutions

4.29.4

Unrolled and scheduled loop Comment

a. Loop: lw $10,40($6)
 lw $1,44($6)
 addi $5,$5,-8
 addi $6,$6,8
 add $11,$5,$10
 add $5,$11,$1
 sw $10,28($11)
 sw $1,24($5)
 beq $5,$0,Loop

The only time this code is unable to execute two
instructions in the same cycle is in even-numbered
iterations of the unrolled loop when the two ADD
instruction are fetched together but must execute
in different cycles.

b. Loop: add $1,$2,$3
 addi $2,$2,8
 sw $0,-8($1)
 sw $0,-4($1)
 beq $2,$0,Loop

We are able to execute two instructions per cycle
in every iteration of this loop, so we execute two
iterations of the unrolled loop every 5 cycles.

4.29.5 We determine the number of cycles needed to execute two iterations of
the original loop (one iteration of the unrolled loop). Note that we cannot use CPI
in our speed-up computation because the two versions of the loop do not execute
the same instructions.

Original loop Unrolled loop Speed-up

a. 6 × 2 = 12 5 2.4

b. 4 × 2 = 8 2.5 (5/2) 3.2

4.29.6 On a pipelined processor the number of cycles per iteration is easily com-
puted by adding together the number of instructions and the number of stalls.
The only stalls occur when a lw instruction is followed immediately with a RAW-
dependent instruction, so we have:

Original loop Unrolled loop Speed-up

a. (6 + 1) × 2 = 14 9 1.6

b. 4 × 2 = 8 5 1.6

Solution 4.30
4.30.1 Let p be the probability of having a mispredicted branch. Whenever we
have an incorrectly predicted beq as the fi rst of the two instructions in a cycle (the
probability of this event is p), we waste one issue slot (half a cycle) and another
two entire cycles. If the fi rst instruction in a cycle is not a mispredicted beq but the

 Chapter 4 Solutions S159

 second one is (the probability of this is (1 - p) ´ p), we waste two cycles. Without
these mispredictions, we would be able to execute 2 instructions per cycle. We
have:

CPI

a. 0.5 + 0.02 × 2.5 + 0.98 × 0.02 × 2 = 0.589

b. 0.5 + 0.05 × 2.5 + 0.95 × 0.05 × 2 = 0.720

4.30.2 Inability to predict a branch results in the same penalty as a mispredicted
branch. We compute the CPI like in 4.30.1, but this time we also have a 2-cycle
penalty if we have a correctly predicted branch in the fi rst issue slot and another
branch that would be correctly predicted in the second slot. We have:

CPI with 2 predicted
 branches per cycle CPI with 1 predicted branch per cycle Speed-up

a. 0.589 0.5 + 0.02 × 2.5 + 0.98 × 0.02 × 2 + 0.18 × 0.18 × 2 = 0.654 1.11

b. 0.720 0.5 + 0.05 × 2.5 + 0.95 × 0.05 × 2 + 0.10 × 0.10 × 2 = 0.740 1.03

4.30.3 We have a one-cycle penalty whenever we have a cycle with two instructions
that both need a register write. Such instructions are ALU and lw instructions.
Note that beq does not write registers, so stalls due to register writes and due to
branch mispredictions are independent events. We have:

CPI with 2 register
writes per cycle CPI with 1 register write per cycle Speed-up

a. 0.589 0.5 + 0.02 × 2.5 + 0.98 × 0.02 × 2 + 0.70 × 0.70 × 1 = 1.079 1.83

b. 0.720 0.5 + 0.05 × 2.5 + 0.95 × 0.05 × 2 + 0.75 × 0.75 × 1 = 1.283 1.78

4.30.4 We have already computed the CPI with the given branch prediction
 accuracy, and we know that the CPI with ideal branch prediction is 0.5, so:

CPI with given
branch prediction

CPI with perfect
branch prediction Speed-up

a. 0.589 0.5 1.18

b. 0.720 0.5 1.44

4.30.5 The CPI with perfect branch prediction is now 0.25 (four instructions
per cycle). A branch misprediction in the fi rst issue slot of a cycle results in 2.75
penalty cycles (remaining issue slots in the same cycle plus 2 entire cycles), in the

S160 Chapter 4 Solutions

second issue slot 2.5 penalty cycles, in the third slot 2.25 penalty cycles, and in the
last (fourth) slot 2 penalty cycles. We have:

CPI with given branch prediction
CPI with perfect
branch prediction Speed-up

a. 0.25 + 0.02 × 2.75 + 0.98 × 0.02 × 2.5 + 0.982 × 0.02 × 2.25 + 0.983 × 0.02 × 2 = 0.435 0.25 1.74

b. 0.25 + 0.05 × 2.75 + 0.95 × 0.05 × 2.5 + 0.952 × 0.05 × 2.25 + 0.953 × 0.05 × 2 = 0.694 0.25 2.77

The speed-up from improved branch prediction is much larger in a 4-issue proces-
sor than in a 2-issue processor. In general, processors that issue more instructions
per cycle gain more from improved branch prediction because each branch mis-
prediction costs them more instruction execution opportunities (e.g., 4 per cycle
in 4-issue versus 2 per cycle in 2-issue).

4.30.6 With this pipeline, the penalty for a mispredicted branch is 20 cycles plus
the fraction of a cycle due to discarding instructions that follow the branch in the
same cycle. We have:

CPI with given branch prediction
CPI with perfect
branch prediction Speed-up

a. 0.25 + 0.02 × 20.75 + 0.98 × 0.02 × 20.5 + 0.982 × 0.02 × 20.25 + 0.983 × 0.02 × 20 = 1.832 0.25 7.33

b. 0.25 + 0.05 × 20.75 + 0.95 × 0.05 × 20.5 + 0.952 × 0.05 × 20.25 + 0.953 × 0.05 × 20 = 4.032 0.25 16.13

We observe huge speed-ups when branch prediction is improved in a processor
with a very deep pipeline. In general, processors with deeper pipelines benefi t more
from improved branch prediction because these processors cancel more instruc-
tions (e.g., 20 stages worth of instructions in a 50-stage pipeline versus 2 stages
worth of instructions in a 5-stage pipeline) on each misprediction.

Solution 4.31
4.31.1 The number of cycles is equal to the number of instructions (one
 instruction is executed per cycle) plus one additional cycle for each data hazard
which occurs when a lw instruction is immediately followed by a dependent
instruction. We have:

CPI

a. (8 + 1)/8 = 1.13

b. (7 + 1)/7 = 1.14

4.31.2 The number of cycles is equal to the number of instructions (one
 instruction is executed per cycle), plus the stall cycles due to data hazards. Data

 Chapter 4 Solutions S161

hazards occur when the memory address used by the instruction depends on the
result of a previous instruction (EXE to ARD, 2 stall cycles) or the instruction after
that (1 stall cycle), or when an instruction writes a value to memory and one of the
next two instructions reads a value from the same address (2 or 1 stall cycles). All
other data dependences can use forwarding to avoid stalls. We have:

Instructions Stall Cycles CPI

a. I1: mov -4(esp), eax
I2: add (edx), eax
I3: mov eax, -4(esp)
I4: add 1, ecx
I5: add 4, edx
I6: cmp esi, ecx
I7: jl Label

No stalls. 7/7 = 1

b. I1: add eax, (edx)
I2: mov eax, edx
I3: add 1, eax
I4: jl Label

No stalls. 4/4 = 1

4.31.3 The number of instructions here is that from the x86 code, but the num-
ber of cycles per iteration is that from the MIPS code (we fetch x86 instructions, but
after instructions are decoded we end up executing the MIPS version of the loop):

CPI

a. 9/7 = 1.29

b. 8/4 = 2

4.31.4 Dynamic scheduling allows us to execute an independent “future”
 instruction when the one we should be executing stalls. We have:

Instructions Reordering CPI

a. I1: lw $2,-4($sp)
I2: lw $3,0($4)
I3: add $2,$2,$3
I4: sw $2,-4($sp)
I5: addi $6,$6,1
I6: addi $4,$4,4
I7: slt $1,$6,$5
I8: bne $1,$0,Label

I3 stalls, but we do I5
instead.

1 (no stalls)

b. I1: lw $2,0($4)
I2: add $2,$2,$5
I3: sw $2,0($4)
I4: add $4,$5,$0
I5: addi $5,$5,1
I6: slt $1,$5,$0
I7: bne $1,$0,Label

I2 stalls, and all
subsequent instructions
have dependences so
this stall remains.

(7 + 1)/7 = 1.14

S162 Chapter 4 Solutions

4.31.5 We use t0, t1, etc. as names for new registers in our renaming. We have:

Instructions Stalls CPI

a. I1: lw t1,-4($sp)
I2: lw $3,0($4)
I3: add $2,t1,$3
I4: sw $2,-4($sp)
I5: addi $6,$6,1
I6: addi $4,$4,4
I7: slt $1,$6,$5
I8: bne $1,$0,Label

I3 would stall, but I5 is executed
instead.

1 (no stalls)

b. I1: lw t1,0($4)
I2: add $2,t1,$5
I3: sw $2,0($4)
I4: add $4,$5,$0
I5: addi $5,$5,1
I6: slt $1,$5,$0
I7: bne $1,$0,Label

I2 stalls, and all subsequent
instructions have dependences so
this stall remains. Note that I4 or
I5 cannot be done instead of I2
because of WAR dependences that
are not eliminated. Renaming $4
in I4 or $5 in I5 does not eliminate
any WAR dependences. This is a
problem when renaming is done
on the code (e.g., by the compiler).
If the processor was renaming
registers at runtime each instance
of I4 would get a new name for the
$4 it produces and we would be
able to “cover” the I2 stall.

(7 + 1)/7 = 1.14

4.31.6 Note that now every time we execute an instruction it can be renamed
differently. We have:

Instructions Reordering CPI

a. I1: lw t1,-4($sp)
I2: lw t2,0($4)
I3: add t3,t1,t2
I4: sw t3,-4($sp)
I5: addi t4,$6,1
I6: addi t5,$4,4
I7: slt t6,t4,$5
I8: bne t6,$0,Label

In next iteration uses of $6 renamed to
t4, $4 renamed to t5.

No stalls remain. I3
would stall stalls, but we
can do I5 instead.

1 (no stalls)

b. I1: lw t1,0($4)
I2: add t2,t1,$5
I3: sw t2,0($4)
I4: add t3,$5,$0
I5: addi t4,$5,1
I6: slt t5,t4,$0
I7: bne t5,$0,Label

In next iteration uses of $4 renamed to
t3, $5 renamed to t4.

No stalls remain. I2
would stall, but we can
do I4 instead.

7/7 = 1

 Chapter 4 Solutions S163

Solution 4.32
4.32.1 The expected number of mispredictions per instruction is the probability
that a given instruction is a branch that is mispredicted. The number of instruc-
tions between mispredictions is one divided by the number of mispredictions per
instruction. We get:

Mispredictions per instruction Instructions between mispredictions

a. 0.2 × (1 – 0.9) 50

b. 0.20 × (1 – 0.995) 1000

4.32.2 The number of in-progress instructions is equal to the pipeline depth
times the issue width. The number of in-progress branches can then be easily com-
puted because we know what percentage of all instructions are branches. We have:

In-progress branches

a. 12 × 4 × 0.20 = 9.6

b. 25 × 4 × 0.20 = 20

4.32.3 We keep fetching from the wrong path until the branch outcome is known,
fetching 4 instructions per cycle. If the branch outcome is known in stage N of the
pipeline, all instructions are from the wrong path in N − 1 stages. In the Nth stage,
all instructions after the branch are from the wrong path. Assuming that the branch
is just as likely to be the 1st, 2nd, 3rd or 4th instruction fetched in its cycle, we have
on average 1.5 instructions from the wrong path in the Nth stage (3 is branch is 1st,
2 is branch is 2nd, 1 is branch is 3rd, and 0 if branch is last). We have:

Wrong-path instructions

a. (10 − 1) × 4 × 1.5 = 37.5

b. (18 − 1) × 4 × 1.5 = 69.5

4.32.4 We can compute the CPI for each processor, then compute the speed-up.
To compute the CPI, we note that we have determined the number of useful
instructions between branch mispredictions (for 4.32.1) and the number of mis-
fetched instructions per branch misprediction (for 4.32.3), and we know how many
instructions in total are fetched per cycle (4 or 8). From that we can determine the

S164 Chapter 4 Solutions

 number of cycles between branch mispredictions, and then the CPI (cycles per
 useful instruction). We have:

4-issue 8-issue

Speed-upCycles CPI Mis-fetched Cycles CPI

a. (37.5 + 50)/4 = 21.9 21.9/50 = 0.438 (10 – 1) × 8 × 3.5 =
75.5

(75.5 + 50)/8 = 15.7 15.7/50 = 0.314 1.39

b. (69.5 + 1000)/4 =
267.4

267.4/1000 = 0.267 (18 – 1) × 8 × 3.5 =
139.5

(139.5 + 1000)/8 =
142.4

142.4/1000 = 0.142 1.88

4.32.5 When branches are executed one cycle earlier, there is one less cycle needed
to execute instructions between two branch mispredivctions. We have:

“Normal” CPI “Improved” CPI Speed-up

a. 21.9/50 = 0.438 20.9/50 = 0.418 1.048

b. 267.4/1000 = 0.267 266.4/1000 = 0.266 1.004

4.32.6

“Normal” CPI “Improved” CPI Speed-up

a. 15.7/50 = 0.314 14.7/50 = 0.294 1.068

b. 142.4/1000 = 0.142 141.4/1000 = 0.141 1.007

Speed-ups from this improvement are larger for the 8-issue processor than with
the 4-issue processor. This is because the 8-issue processor needs fewer cycles to
execute the same number of instructions, so the same 1-cycle improvement repre-
sents a large relative improvement (speed-up).

Solution 4.33
4.33.1 We need two register reads for each instruction issued per cycle:

Read ports

a. 4 × 2 = 8

b. 2 × 2 = 4

4.33.2 We compute the time-per-instruction as CPI times the clock cycle time.
For the 1-issue 5-stage processor we have a CPI of 1 and a clock cycle time of T. For
an N-issue K-stage processor we have a CPI of 1/N and a clock cycle of T ´ 5/K.
Overall, we get a speed-up of:

 Chapter 4 Solutions S165

Speed-up

a. 10/5 × 4 = 8

b. 25/5 × 2 = 10

4.33.3 We are unable to benefi t from a wider issue width (CPI is 1), so we have:

Speed-up

a. 10/5 = 2

b. 25/5 = 5

4.33.4 We fi rst compute the number of instructions executed between mispre-
dicted branches. Then we compute the number of cycles needed to execute these
instructions if there were no misprediction stalls, and the number of stall cycles
due to a misprediction. Note that the number of cycles spent on a misprediction
in is the number of entire cycles (one less than the stage in which branches are
executed) and a fraction of the cycle in which the mispredicted branch instruc-
tion is. The fraction of a cycle is determined by averaging over all possibilities. In
an N-issue processor, we can have the branch as the fi rst instruction of the cycle,
in which case we waste (N - 1) Nths of a cycle, or the branch can be the second
instruction in the cycle, in which case we waste (N - 2) Nths of a cycle, …, or the
branch can be the last instruction in the cycle, in which case none of that cycle
is wasted. With all of this data we can compute what percentage of all cycles are
misprediction stall cycles:

Instructions between
branch mispredictions

Cycles between
branch mispredictions

Stall
Cycles % Stalls

a. 1/(0.30 × 0.05) = 66.7 66.7/4 = 16.7 6.4 6/(16.7 + 6.4) = 26%

b. 1/(0.15 × 0.03) = 222.2 222.2/2 = 111.1 7.3 7/(111.1 + 7.3) = 5.9%

4.33.5 We have already computed the number of stall cycles due to a branch mis-
prediction, and we know how to compute the number of non-stall cycles between
mispredictions (this is where the misprediction rate has an effect). We have:

Stall cycles between
mispredictions

Need # of instructions
between mispredictions

Allowed branch
misprediction rate

a. 6.4 6.4 × 4/0.10 = 255 1/(255 × 0.30) = 1.31%

b. 7.3 7.3 × 2/0.02 = 725 1/(725 × 0.15) = 0.92%

The needed accuracy is 100% minus the allowed misprediction rate.

S166 Chapter 4 Solutions

4.33.6 This problem is very similar to We have already computed the number of
stall cycles due to a branch misprediction, and we know how to compute the num-
ber of non-stall cycles between mispredictions (this is where the misprediction rate
has an effect). We have:, except that we are aiming to have as many stall cycles as we
have non-stall cycles. We get:

Stall cycles between
mispredictions

Need # of instructions
between mispredictions

Allowed branch
misprediction rate

a. 6.4 6.4 × 4 = 25.5 1/(25.5 × 0.30) = 13.1%

b. 7.3 7.3 × 2 = 14.5 1/(14.5 × 0.15) = 46.0%

The needed accuracy is 100% minus the allowed misprediction rate.

Solution 4.34
4.34.1 We need an IF pipeline stage to fetch the instruction. Since we will only
execute one kind of instruction, we do not need to decode the instruction but we
still need to read registers. As a result, we will need an ID pipeline stage although
it would be misnamed. After that, we have an EXE stage, but this stage is sim-
pler because we know exactly which operation should be executed so there is no
need for an ALU that supports different operations. Also, we need no Mux to select
which values to use in the operation because we know exactly which value it will
be. We have:

a. In the ID stage we read two registers and we do not need a sign-extend unit. In the EXE stage
we need an Add unit whose inputs are the two register values read in the ID stage. After the
EXE stage we have a WB stage which writes the result from the Add unit into Rd (again, no
Mux). Note that there is no MEM stage, so this is a 4-stage pipeline. Also note that the PC is
always incremented by 4, so we do not need the other Add and Mux units that compute the
new PC for branches and jumps.

b. We only read one register in the ID stage so there is no need for the second read port in the
Registers unit. We do need a sign-extend unit for the Offs fi eld in the instruction word. In the
EXE stage we need an Add unit whose inputs are the register value and the sign-extended
offset from the ID stage. After the EXE stage we use the output of the Add unit as a memory
address in the MEM stage, and then we have a WB stage which writes the value we read in the
MEM stage into Rt (again, no Mux). Also note that the PC is always incremented by 4, so we do
not need the other Add and Mux units that compute the new PC for branches and jumps.

 Chapter 4 Solutions S167

4.34.2

a. Assuming that the register write in WB happens in the fi rst half of the cycle and the register
reads in ID happen in the second half, we only need to forward the Add result from the EX/WB
pipeline register to the inputs of the Add unit in the EXE stage of the next instruction (if that
next instruction depends on the previous one). No hazard detection unit is needed because
forwarding eliminates all hazards.

b. Assuming that the register write in WB happens in the fi rst half of the cycle and the register
read in ID happens in the second half, we only need to forward the memory value from the
MEM/WB pipeline register to the fi rst (register) input of the Add unit in the EXE stage of the
next or second-next instruction (if one of those two instructions is dependent on the one that
has just read the value). We also need a hazard detection unit that stalls any instruction whose
Rs register fi eld is equal to the Rt fi eld of the previous instruction.

4.34.3 We need to add some decoding logic to our ID stage. The decoding logic
must simply check whether the opcode and funct fi led (if there is a funct fi eld)
match this instruction. If there is no match, we must put the address of the excep-
tion handler into the PC (this adds a Mux before the PC) and fl ush (convert to
nops) the undefi ned instruction (write zeros to the ID/EX pipeline register) and
the following instruction which has already been fetched (write zeros to the IF/ID
pipeline register).

4.34.4

a. We need to add the logic that computes the branch address (sign-extend, shift-left–2, Add, and
Mux to select the PC). We also need to replace the Add unit in EXE with an ALU that supports
either an ADD or a comparison. The ALUOp signal to select between these operations must be
supplied by the Control unit.

b. We need to add back the second register read port (AND reads two registers), add the Mux
that selects the value supplied to the second ALU input (register for AND, Offs for LW), add an
ALUOp signal to select between two ALU operations, and replace the Add unit in EXE with an ALU
that supports either an Add or an And operation. Finally, we must add to the WB stage the Mux
that select whether the value to write to the register is the value from the ALU of from memory,
and the Mux in the EX stage that selects which register to write to (Rd for AND, Rt for LW).

4.34.5

a. The same forwarding logic used for forwarding from one ADD to another can also be used to
forward from ADD to BEQ. We still need no hazard detection for data hazards, but we must add
detection of control hazards. Assuming there is no branch prediction, whenever a BEQ is taken
we must fl ush (convert to NOPs) all instructions that were fetched after that branch.

b. We need to add forwarding from the EX/MEM pipeline register to the ALU inputs in the EXE
stage (so AND can forward to the next instruction), and we need to extend our forwarding from
the MEM/WB pipeline register to the second input of the ALU unit (so LW can forward to an
AND whose Rt (input) register is the same as the Rt (result) register of the LW instruction. We
also need to extend the hazard detection unit to also stall any AND instruction whose Rs or Rt
register fi eld is equal to the Rt fi eld of the previous LW instruction.

S168 Chapter 4 Solutions

4.34.6 The decoding logic must now check if the instruction matches either of
the two instructions. After that, the exception handling is the same as for 4.34.3.

Solution 4.35
4.35.1 The worst case for control hazards is if the mispredicted branch instruction
is the last one in its cycle and we have been fetching the maximum number of
instructions in each cycle. Then the control hazard affects the remaining instructions
in the branch’s own pipeline stage and all instructions in stages between fetch and
branch execution stage. We have:

Delay slots needed

a. 7 × 4 – 1 = 27

b. 17 × 2 – 1 = 33

4.35.2 If branches are executed in stage X, the number of stall cycles due to a
misprediction is (N - 1). These cycles are reduced by fi lling them with delay slot
instructions. We compute the number of execution (non-stall) cycles between mis-
predictions, and the speed-up as follows:

Non-stall cycles between
mispredictions

Stall cycles without delay
slots

Stall cycles with 4 delay
slots

Speed-up due to delay
slots

a. 1/(020 × (1 – 0.80) × 4) = 6.25 6 5 (6.25 + 6)/(6.25 + 5) = 1.089

b. 1/(025 × (1 – 0.92) × 2) = 25 16 14 (25 + 16)/(25 + 14) = 1.051

4.35.3 For 20% of branches, we add an extra instruction, for 30% of the branches
we add two extra instructions, and for 40% of branches, we add three extra
instructions. Overall, an average branch instruction is now accompanied by 0.20 +
0.30 ´ 2 + 0.40 ´ 3 = 2 nop instructions. Note that these nops are added for every
branch, not just mispredicted ones. These nop instructions add to the execution
time of the program, so we have:

Total cycles between
mispredictions without delay

slots
Stall cycles with 4

delay slots
Extra cycles spent on

NOPs
Speed-up due to

delay slots

a. 6.25 + 6 = 12.25 5 0.5 × 6.25 × 0.20 = 0.625 12.5/(6.25 + 5 + 0.625) = 1.032

b. 25 + 16 = 41 14 1 × 25 × 0.25 = 6.25 41/(25 + 14 + 6.25) = 0.906

 Chapter 4 Solutions S169

4.35.4

a. add $2,$0,$0 ; $1=0
Loop: beq $2,$3,End
 lb $10,1000($2) ; Delay slot
 sb $10,2000($2)
 beq $0,$0,Loop
 addi $2,$2,1 ; Delay slot
Exit:

b. add $2,$0,$0 ; $1=0
Loop: lb $10,1000($2)
 lb $11,1001($2)
 beq $10,$11,End
 addi $1,$1,1 ; Delay slot
 beq $0,$0,Loop
 addi $2,$2,1 ; Delay slot
Exit: addi $1,$1,-1 ; Undo c++ from delay slot

4.35.5

a. add $2,$0,$0 ; $1=0
Loop: beq $2,$3,End
 lb $10,1000($2) ; Delay slot
 nop ; 2nd delay slot
 beq $0,$0,Loop
 sb $10,2000($2) ; Delay slot
 addi $2,$2,1 ; 2nd delay slot
Exit:

b. add $2,$0,$0 ; $1=0
 lb $10,1000($2) ; Prepare for fi rst iteration
 lb $11,1001($2) ; Prepare for fi rst iteration
Loop: beq $10,$11,End
 addi $1,$1,1 ; Delay slot
 addi $2,$2,1 ; 2nd delay slot
 beq $0,$),Loop
 lb $10,1000($2) ; Delay slot, prepare for next iteration
 lb $11,1001($2) ; 2nd delay slot, prepare for next iteration
Exit: addi $1,$1,-1 ; Undo c++ from delay slot
 addi $2,$2,-1 ; Undo i++ from 2nd delay slot

4.35.6 The maximum number of in-fl ight instructions is equal to the pipeline
depth times the issue width. We have:

Instructions in fl ight Instructions per iteration Iterations in fl ight

a. 10 × 4 = 40 5 40/5 + 1 = 9

b. 25 × 2 = 50 6 roundUp(50/6) + 1 = 10

S170 Chapter 4 Solutions

Note that an iteration is in-fl ight when even one of its instructions is in-fl ight. This
is why we add one to the number we compute from the number of instructions in
fl ight (instead of having an iteration entirely in fl ight, we can begin another one
and still have the “trailing” one partially in-fl ight) and round up.

Solution 4.36

4.36.1

Instruction Translation

a. lwinc Rt,Offset(Rs) lw Rt,Offset(Rs)
addi Rs,Rs,4

b. addr Rt,Offset(Rs) lw tmp,Offset(Rs)
add Rt,Rt,tmp

4.36.2 The ID stage of the pipeline would now have a lookup table and a micro-
PC, where the opcode of the fetched instruction would be used to index into the
lookup table. Micro-operations would then be placed into the ID/EX pipeline
register, one per cycle, using the micro-PC to keep track of which micro-op is the
next one to be output. In the cycle in which we are placing the last micro-op of an
instruction into the ID/EX register, we can allow the IF/ID register to accept the
next instruction. Note that this results in executing up to one micro-op per cycle,
but we actually fetching instructions less often than that.

4.36.3

Instruction

a. We need to add an incrementer in the MEM stage. This incrementer would increment the value
read from Rs while memory is being accessed. We also need to change the Registers unit to
allow two writes to happen in the same cycle, so we can write the value from memory into Rt
and the incremented value of Rs back into Rs.

b. We need another EX stage after the MEM stage to perform the addition. The result can then be
stored into Rt in the WB stage.

4.36.4 Not often enough to justify the changes we need to make to the pipeline.
Note that these changes slow down all the other instructions, so we are speeding up
a relatively small fraction of the execution while slowing down everything else.

4.36.5 Each original addm instruction now results in executing two more
instructions, and also adds a stall cycle (the add depends on the lw). As a result,

 Chapter 4 Solutions S171

each cycle in which we executed an addm instruction now adds three more cycles
to the execution. We have:

Speed-up from addm translation

a. 1/(1 + 0.05 × 3) = 0.87

b. 1/(1 + 0.10 × 3) = 0.77

4.36.6 Each translated addm adds the 3 stall cycles, but now half of the existing
stalls are eliminated. We have:

Speed-up from addm translation

a. 1/(1 + 0.05 × 3 – 0.05/2) = 0.89

b. 1/(1 + 0.10 × 3 – 0.10/2) = 0.8

Solution 4.37
4.37.1 All of the instructions use the instruction memory, the PC + 4 adder, the
control unit (to decode the instruction), and the ALU. For the least utilized unit,
we have:

a. The result of the branch adder (add offset to PC + 4) is only used by the BEQ instruction, the
data memory read port is only used by the LW instruction, and the write port is only used by the
last SW instruction (the fi rst SW is not executed because the BEW is taken).

b. The result of the branch adder (add offset to PC + 4) is never used.

Note that the branch adder performs its operation in every cycle, but its result is
actually used only when a branch is taken.

4.37.2 The read port is only used by lw and the write port by sw instructions.
We have:

Data memory read Data memory write

a. 25% (1 out of 4) 25% (1 out of 4)

b. 40% (2 out of 5) 20% (1 out of 5)

4.37.3 In the IF/ID pipeline register, we need 32 bits for the instruction word
and 32 bits for PC + 4 for a total of 64 bits. In the ID/EX register, we need 32 bits
for each of the two register values, the sign-extended offset/immediate value, and
PC + 4 (for exception handling). We also need 5 bits for each of the three register
fi elds from the instruction word (Rs, Rt, Rd), and 10 bits for all the control
signals output by the Control unit. The total for the ID/EX register is 153 bits.

S172 Chapter 4 Solutions

In the EX/MEM register, we need 32 bits each for the value of register Rt and for
the ALU result. We also need 5 bits for the number of the destination register and
4 bits for control signals. The total for the EX/MEM register is 73 bits. Finally, for
the MEM/WB register we need 32 bits each for the ALU result and value from
memory, 5 bits for the number of the destination register, and 2 bits for control
signals. The total for MEM/WB is 71 bits. The grand total for all pipeline registers
is 361 bits.

4.37.4 In the IF stage, the critical path is the I-Mem latency. In the ID stage,
the critical path is the latency to read Regs. In the EXE stage, we have a Mux and
then ALU latency. In the MEM stage we have the D-Mem latency, and in the WB
stage we have a Mux latency and setup time to write Regs (which we assume is
zero). For a single-cycle design, the clock cycle time is the sum of these per-stage
latencies (for a load instruction). For a pipelined design, the clock cycle time
is the longest of the per-stage latencies. To compare these clock cycle times, we
compute a speed-up based on clock cycle time alone (assuming the number of
clock cycles is the same in single-cycle and pipelined designs, which is not true).
We have:

IF ID EX MEM WB Single-cycle Pipelined “Speed-up”

a. 400ps 200ps 150ps 350ps 30ps 1130ps 400ps 2.83

b. 500ps 220ps 280ps 1000ps 100ps 2100ps 1000ps 2.10

Note that this speed-up is signifi cantly lower than 5, which is the “ideal” speed-up
of 5-stage pipelining.

4.37.5 If we only support add instructions, we do not need the MUX in the WB
stage, and we do not need the entire MEM stage. We still need Muxes before the
ALU for forwarding. We have:

IF ID EX WB Single-cycle Pipelined “Speed-up”

a. 400ps 200ps 150ps 0ps 750ps 400ps 1.88

b. 500ps 220ps 280ps 0ps 1000ps 500ps 2.00

Note that the “ideal” speed-up from pipelining is now 4 (we removed the MEM
stage), and the actual speed-up is about half of that.

4.37.6 For the single cycle design, we can reduce the clock cycle time by 1ps by
reducing the latency of any component on the critical path by 1ps (if there is only
one critical path). For a pipelined design, we must reduce latencies of all stages that
have longer latencies than the target latency. We have:

 Chapter 4 Solutions S173

Single-cycle Needed cycle time for pipelined Cost for Pipelined

a. 0.2 × 1130 = $226 0.8 × 400ps = 320ps $80 + $30 = $130
(IF and MEM)

b. 0.2 × 2100 = $420 0.8 × 1000ps = 800ps $200 (MEM)

Note that the cost of improving the pipelined design by 20% is lower. This is
because its clock cycle time is already lower, so a 20% improvement represents
fewer picoseconds (and fewer dollars in our problem).

Solution 4.38
4.38.1 The energy for the two designs is the same: I-Mem is read, two registers
are read, and a register is written. We have:

a. 100pJ + 2 × 60pJ + 70pJ = 290pJ

b. 200pJ + 2 × 90pJ + 80pJ = 460pJ

4.38.2 The instruction memory is read for all instructions. Every instruction also
results in two register reads (even if only one of those values is actually used).
A load instruction results in a memory read and a register write, a store instruction
results in a memory write, and all other instructions result in either no register
write (e.g., beq) or a register write. Because the sum of memory read and register
write energy is larger than memory write energy, the worst-case instruction is a
load instruction. For the energy spent by a load, we have:

a. 100pJ + 2 × 60pJ + 70pJ + 120pJ = 410pJ

b. 200pJ + 2 × 90pJ + 80pJ + 300pJ = 760pJ

4.38.3 Instruction memory must be read for every instruction. However, we
can avoid reading registers whose values are not going to be used. To do this, we
must add RegRead1 and RegRead2 control inputs to the Registers unit to enable or
disable each register read. We must generate these control signals quickly to avoid
lengthening the clock cycle time. With these new control signals, a lw instruction
results in only one register read (we still must read the register used to generate the
address), so we have:

Energy before change Energy saved by change % Savings

a. 100pJ + 2 × 60pJ + 70pJ + 120pJ = 410pJ 60pJ 14.6%

b. 200pJ + 2 × 90pJ + 80pJ + 300pJ = 760pJ 90pJ 11.8%

S174 Chapter 4 Solutions

4.38.4 Before the change, the Control unit decodes the instruction while register
reads are happening. After the change, the latencies of Control and Register Read
cannot be overlapped. This increases the latency of the ID stage and could affect
the processor’s clock cycle time if the ID stage becomes the longest-latency stage.
We have:

Clock cycle time before change Clock cycle time after change

a. 400ps (I-Mem in IF stage) 500ps (Ctl then Regs in ID stage)

b. 1000ps (D-Mem in MEM stage) No change (400ps + 220ps < 1000ps).

4.38.5 If memory is read in every cycle, the value is either needed (for a load
instruction), or it does not get past the WB Mux (or a non-load instruction that
writes to a register), or it does not get written to any register (all other instructions,
including stall). This change does not affect clock cycle time because the clock cycle
time must already allow enough time for memory to be read in the MEM stage. It
does affect energy: a memory read occurs in every cycle instead of only in cycles
when a load instructions is in the MEM stage.

4.38.6

I-Mem active energy I-Mem latency Clock cycle time Total I-Mem Energy Idle energy %

a. 100pJ 400ps 400ps 100pJ 0%

b. 200pJ 500ps 1000ps 200pJ + 500ps × 0.1 ×
200pJ/500ps = 220pJ

20pJ/220pJ = 9.1%

Solution 4.39
4.39.1 The number of instructions executed per second is equal to the number of
instructions executed per cycle (IPC, which is 1/CPI) times the number of cycles per
second (clock frequency, which is 1/T where T is the clock cycle time). The IPC is he
percentage of cycle in which we complete an instruction (and not a stall), and the
clock cycle time is the latency of the maximum-latency pipeline stage. We have:

IPC Clock cycle time Clock frequency Instructions per second

a. 0.85 500ps 2.00 GHz 1.70 × 109

b. 0.70 200ps 5.00 GHz 3.50 × 109

 Chapter 4 Solutions S175

4.39.2 Power is equal to the product of energy per cycle times the clock frequency
(cycles per second). The energy per cycle is the total of the energy expenditures in
all fi ve stages. We have:

Clock Frequency Energy per cycle (in pJ) Power (W)

a. 2.00 GHz 120 + 60 + 75 + 0.30 × 120 + 0.55 × 20 = 305 0.61

b. 5.00 GHz 150 + 60 + 50 + 0.35 × 150 + 0.50 × 20 = 322.5 1.61

4.39.3 The time that remains in the clock cycle after a circuit completes its work
is often called slack. We determine the clock cycle time and then the slack for each
pipeline stage:

Clock cycle time IF slack ID slack EX slack MEM slack WB slack

a. 500ps 200ps 100ps 150ps 0ps 400ps

b. 200ps 0ps 50ps 80ps 10ps 60ps

4.39.4 All stages now have latencies equal to the clock cycle time. For each stage,
we can compute the factor X for it by dividing the new latency (clock cycle time)
by the original latency. We then compute the new per-cycle energy consumption
for each stage by dividing its energy by its factor X. Finally, we re-compute the
power dissipation:

X for IF X for ID X for EX X for MEM X for WB New Power (W)

a. 500/300 500/400 500/350 500/500 500/100 0.43

b. 200/200 200/150 200/120 200/190 200/140 1.41

4.39.5 This changes the clock cycle time to 1.1 of the original, which changes the
factor X for each stage and the clock frequency. After that this problem is solved in
the same way as all stages now have latencies equal to the clock cycle time. For each
stage, we can compute the factor X for it by dividing the new latency (clock cycle
time) by the original latency. We then compute the new per-cycle energy consump-
tion for each stage by dividing its energy by its factor X. Finally, we re-compute the
power dissipation:. We get:

X for IF X for ID X for EX X for MEM X for WB New Power (W)

a. 550/300 550/400 550/350 550/500 550/100 0.35

b. 220/200 220/150 220/120 220/190 220/140 1.16

S176 Chapter 4 Solutions

4.39.6 The X factor for each stage is the same as in this changes the clock cycle
time to 1.1 of the original, which changes the factor X for each stage and the clock
frequency. After that this problem is solved in the same way as all stages now have
latencies equal to the clock cycle time. For each stage, we can compute the factor
X for it by dividing the new latency (clock cycle time) by the original latency. We
then compute the new per-cycle energy consumption for each stage by dividing its
energy by its factor X. Finally, we re-compute the power dissipation:. We get:, but
this time in our power computation we divide the per-cycle energy of each stage by
X2 instead of x. We get:

New Power (W) Old Power (W) Saved

a. 0.24 0.61 60.7%

b. 0.95 1.61 41.0%

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
 /AGaramond-Bold
 /AGaramond-BoldItalic
 /AGaramond-Italic
 /AGaramond-Regular
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Albertus-ExtraBold
 /Albertus-Medium
 /AlbertusMT
 /AlbertusMT-Italic
 /AlbertusMT-Light
 /AllegroBT-Regular
 /AntiqueOlive
 /AntiqueOlive-Bold
 /AntiqueOlive-Compact
 /AntiqueOlive-Italic
 /AntiqueOlive-Roman
 /Apple-Chancery
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /AvantGarde-Book
 /AvantGarde-BookOblique
 /AvantGarde-Demi
 /AvantGarde-DemiOblique
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /AvantGardeITCbyBT-Demi
 /AvantGardeITCbyBT-DemiOblique
 /BabyKruffy
 /BankGothicBT-Medium
 /BenguiatITCbyBT-Bold
 /BernhardFashionBT-Regular
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /Bodoni
 /Bodoni-Bold
 /Bodoni-BoldItalic
 /Bodoni-Italic
 /Bodoni-Poster
 /Bodoni-PosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /Bookman-Demi
 /Bookman-DemiItalic
 /Bookman-Light
 /Bookman-LightItalic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BremenBT-Bold
 /Candid
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CGOmega
 /CGOmega-Bold
 /CGOmega-BoldItalic
 /CGOmega-Italic
 /CGTimes
 /CGTimes-Bold
 /CGTimes-BoldItalic
 /CGTimes-Italic
 /Chicago
 /Chick
 /Clarendon
 /Clarendon-Bold
 /Clarendon-Condensed-Bold
 /Clarendon-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CooperBlack-Italic
 /CopperplateGothicBT-Bold
 /Copperplate-ThirtyThreeBC
 /Copperplate-ThirtyTwoBC
 /Coronet
 /Coronet-Regular
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /Croobie
 /English111VivaceBT-Regular
 /EstrangeloEdessa
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /Eurostile
 /Eurostile-Bold
 /Eurostile-BoldExtendedTwo
 /Eurostile-ExtendedTwo
 /Fat
 /Fences
 /FencesPlain
 /FranklinGothic-Book
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Freshbot
 /Frosty
 /FuturaBlackBT-Regular
 /FuturaBT-Bold
 /FuturaBT-BoldItalic
 /FuturaBT-ExtraBlack
 /FuturaBT-Light
 /FuturaBT-LightItalic
 /Garamond
 /Garamond-Antiqua
 /Garamond-Bold
 /Garamond-Book
 /Garamond-BookItalic
 /Garamond-Halbfett
 /Garamond-Italic
 /Garamond-Kursiv
 /Garamond-KursivHalbfett
 /Gautami
 /Geneva
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /GeorgiaRef
 /GillSans
 /GillSans-Bold
 /GillSans-BoldCondensed
 /GillSans-BoldItalic
 /GillSans-Condensed
 /GillSans-ExtraBold
 /GillSans-Italic
 /GillSans-Light
 /GillSans-LightItalic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /Goudy
 /Goudy-Bold
 /Goudy-BoldItalic
 /Goudy-ExtraBold
 /GoudyHandtooledBT-Regular
 /Goudy-Italic
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /Helvetica
 /Helvetica-Black
 /Helvetica-BlackOblique
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Condensed
 /Helvetica-Condensed-Bold
 /Helvetica-Condensed-BoldObl
 /Helvetica-Condensed-Oblique
 /Helvetica-Light
 /Helvetica-LightOblique
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HoeflerText-Black
 /HoeflerText-BlackItalic
 /HoeflerText-Italic
 /HoeflerText-Ornaments
 /HoeflerText-Regular
 /Humanist521BT-Bold
 /Humanist521BT-BoldItalic
 /Humanist521BT-Italic
 /Humanist521BT-Roman
 /Impact
 /Jenkinsv20
 /Jenkinsv20Thik
 /JoannaMT
 /JoannaMT-Bold
 /JoannaMT-BoldItalic
 /JoannaMT-Italic
 /Jokewood
 /KabelITCbyBT-Book
 /KabelITCbyBT-Ultra
 /Kartika
 /Latha
 /LetterGothic
 /LetterGothic-Bold
 /LetterGothic-BoldSlanted
 /LetterGothic-Italic
 /LetterGothic-Slanted
 /LubalinGraph-Book
 /LubalinGraph-BookOblique
 /LubalinGraph-Demi
 /LubalinGraph-DemiOblique
 /LucidaConsole
 /LucidaSansUnicode
 /Mangal-Regular
 /Marigold
 /MathExt
 /Meridien-Bold
 /Meridien-BoldItalic
 /Meridien-Italic
 /Meridien-Medium
 /Meridien-MediumItalic
 /Meridien-Roman
 /MicrosoftSansSerif
 /Minion-Black
 /Minion-Bold
 /Minion-BoldItalic
 /Minion-DisplayItalic
 /Minion-DisplayRegular
 /Minion-Italic
 /Minion-Regular
 /Minion-Semibold
 /Minion-SemiboldItalic
 /Monaco
 /MonaLisa-Recut
 /MonotypeCorsiva
 /MSReference1
 /MSReference2
 /MSReferenceSansSerif
 /MSReferenceSansSerif-Bold
 /MSReferenceSansSerif-BoldItalic
 /MSReferenceSansSerif-Italic
 /MSReferenceSerif
 /MSReferenceSerif-Bold
 /MSReferenceSerif-BoldItalic
 /MSReferenceSerif-Italic
 /MSReferenceSpecialty
 /MT-Extra
 /MT-Symbol
 /MT-Symbol-Italic
 /MVBoli
 /Myriad-BdWeb
 /Myriad-CnItWeb
 /Myriad-CnWeb
 /Myriad-ItWeb
 /Myriad-Web
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NewYork
 /Optima
 /Optima-Bold
 /Optima-BoldItalic
 /Optima-Italic
 /Oxford
 /OzHandicraftBT-Roman
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Palatino-Roman
 /Poornut
 /Porkys
 /PorkysHeavy
 /PosterBodoniBT-Roman
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RefSpecialty
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Italic
 /Rockwell-Light
 /Rockwell-LightItalic
 /SerifaBT-Bold
 /SerifaBT-Italic
 /SerifaBT-Roman
 /SerifaBT-Thin
 /Shruti
 /SouvenirITCbyBT-DemiItalic
 /SouvenirITCbyBT-Light
 /SouvenirITCbyBT-LightItalic
 /Staccato222BT-Regular
 /StempelGaramond-Bold
 /StempelGaramond-BoldItalic
 /StempelGaramond-Italic
 /StempelGaramond-Roman
 /StoneSans
 /StoneSans-Bold
 /StoneSans-BoldItalic
 /StoneSans-Italic
 /StoneSans-Semibold
 /StoneSans-SemiboldItalic
 /StoneSerif
 /StoneSerif-Bold
 /StoneSerif-BoldItalic
 /StoneSerif-Italic
 /StoneSerif-Semibold
 /StoneSerif-SemiboldItalic
 /Swiss911BT-ExtraCompressed
 /Sylfaen
 /Symbol
 /SymbolMT
 /Taffy
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TypoUprightBT-Regular
 /Univers
 /Univers-Black
 /Univers-BlackOblique
 /Univers-Bold
 /Univers-BoldExt
 /Univers-BoldExtObl
 /Univers-BoldItalic
 /Univers-BoldOblique
 /Univers-Condensed
 /Univers-CondensedBold
 /Univers-Condensed-Bold
 /Univers-Condensed-BoldItalic
 /Univers-CondensedBoldOblique
 /Univers-Condensed-Medium
 /Univers-Condensed-MediumItalic
 /Univers-CondensedOblique
 /Univers-Extended
 /Univers-ExtendedObl
 /Univers-Light
 /Univers-LightOblique
 /Univers-Medium
 /Univers-MediumItalic
 /Univers-Oblique
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VerdanaRef
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WP-ArabicScriptSihafa
 /WP-ArabicSihafa
 /WP-BoxDrawing
 /WP-CyrillicA
 /WP-CyrillicB
 /WP-GreekCentury
 /WP-GreekCourier
 /WP-GreekHelve
 /WP-HebrewDavid
 /WP-IconicSymbolsA
 /WP-IconicSymbolsB
 /WP-Japanese
 /WP-MathA
 /WP-MathB
 /WP-MathExtendedA
 /WP-MathExtendedB
 /WP-MultinationalAHelve
 /WP-MultinationalARoman
 /WP-MultinationalBCourier
 /WP-MultinationalBHelve
 /WP-MultinationalBRoman
 /WP-MultinationalCourier
 /WP-Phonetic
 /WPTypographicSymbols
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZapfElliptical711BT-Bold
 /ZapfElliptical711BT-BoldItalic
 /ZapfElliptical711BT-Italic
 /ZapfElliptical711BT-Roman
 /ZurichBT-RomanExtended
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 2400
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 810.000]
>> setpagedevice

